
      

 

 

 

 

This work was carried out in whole or in part within the framework of 

the NOMATEN Center of Excellence, supported from the European 

Union Horizon 2020 research and innovation programme (Grant 

Agreement No. 857470) and from the European Regional 

Development Fund via the Foundation for 

Polish Science International Research Agenda PLUS 

programme (Grant No. MAB PLUS/2018/8). 

  
 
This is a copy of the publication which appeared in:  Science Advances, Vol 6, Issue 41, published on: 

7 Oct 2020. 

DOI: 10.1126/sciadv.abc7350 

 

 

 

 

 

 

 

 



Mäkinen et al., Sci. Adv. 2020; 6 : eabc7350     7 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 6

C O N D E N S E D  M A T T E R  P H Y S I C S

Propagating bands of plastic deformation in a metal 
alloy as critical avalanches
Tero Mäkinen1*, Pasi Karppinen2, Markus Ovaska1, Lasse Laurson3, Mikko J. Alava1,4

The plastic deformation of metal alloys localizes in the Portevin–Le Chatelier effect in bands of different types, 
including propagating, or type “A” bands, usually characterized by their width and a typical propagation velocity. 
This plastic instability arises from collective dynamics of dislocations interacting with mobile solute atoms, but 
the resulting sensitivity to the strain rate lacks fundamental understanding. Here, we show, by using high-resolution 
imaging in tensile deformation experiments of an aluminum alloy, that the band velocities exhibit large fluctua-
tions. Each band produces a velocity signal reminiscent of crackling noise bursts observed in numerous driven 
avalanching systems from propagating cracks in fracture to the Barkhausen effect in ferromagnets. The statistical 
features of these velocity bursts including their average shapes and size distributions obey predictions of a simple 
mean-field model of critical avalanche dynamics. Our results thus reveal a previously unknown paradigm of 
criticality in the localization of deformation.

INTRODUCTION
Complexity in materials deformation is important for engineering 
and involves fundamental nonequilibrium physics. Such phenomena 
are encountered when samples are loaded beyond the regime of 
linear, elastic response. Then, metals yield and the plastic deforma-
tion before failure is now known to exhibit very complex properties 
on various scales in time and space (1–4). The challenges this brings 
up range from avalanches of plastic deformation to the statistical 
fluctuations of the yield stress in finite samples to deformation 
localization. A typical manifestation of localization is the appear-
ance of shear bands and, here, we study the Portevin–Le Chatelier 
(PLC) effect (5, 6).

The PLC effect implies the creation of deformation bands in a 
sample (Fig. 1) when it is loaded beyond the yield point: Such bands 
nucleate and may or may not propagate depending on the class of 
PLC instability present (7, 8) (in the common classification, type A 
denotes propagating and types B and C denote nonpropagating 
bands). The deformation bands are accompanied by material insta-
bilities; in the case of tensile tests, stress drops, which then produce 
serrated stress-strain curves (Fig. 1B). This kind of strain rate sensi-
tivity (9, 10) arises as a strain rate–dependent phenomenon; more-
over, its character and presence are dependent on the temperature. 
The PLC effect is attributed to dynamic strain aging (DSA) (11–13), 
and the crucial physics is in the interaction of the dislocations as the 
fundamental carriers of plastic deformation with the solute atoms 
in the alloy (14–16). On the mesoscopic level, theories of increasing 
complexity have been proposed such that they would account for 
the necessary dislocation physics: elementary classes of immobile 
and “aging,” solute bound dislocations, and mobile ones producing 
plastic deformation. Such models and a multitude of experiments 
have been recently introduced to explore the physics of the PLC 
effect: phases in the band nucleation (17–20) and dynamics including 

serrations in the stress-strain curves (8, 10, 21–25), acoustic emis-
sion (25–28) from the effect, and so forth.

RESULTS
Here, we take a fundamentally different approach of coarse grain-
ing, where the bands are reduced to zero-dimensional “particles.” 
This amounts to studying the propagation velocity signals vb(t) of 
each individual propagating (“type A”) band during a deformation 
experiment. Our high-resolution experiments based on speckle 
imaging of the deforming sample (see Fig. 1 and Materials and 
Methods for details) reveal that the vb(t) signals are reminiscent of 
crackling noise bursts found in numerous driven systems ranging 
from propagating cracks (29) and fluid fronts invading porous 
media (30) to the jerky field-driven motion of domain walls in 
ferromagnets (see Fig. 1C) (31–33). This is in contrast to the tradi-
tional viewpoint where one would characterize the movement of 
the bands only via their average velocity ​​   ​v​ b​​​​. Time averaging each of 
the fluctuating vb(t) signals, we recover the known phenomenology 
in that ​​   ​v​ b​​​​ is found to decrease with the strain ϵ and increase with the 
strain rate ​​ϵ ̇ ​​ (Fig. 2) (34–37). In this case, we found a power-law 
increase with the strain rate and an exponential decrease with strain 
so that they can be summarized as

	​​​    ​v​ b​​​  ∝ ​​ ϵ ̇ ​​​ p​ exp​(​​− ​ ϵ ─ ​ϵ​ 0​​ ​​)​​​​	 (1)

and with the dataset at hand, we find p = 0.6 and ϵ0 = 0.16.
To characterize the properties of the vb(t) signals/velocity bursts 

corresponding to individual bands, we start by considering their 
average shapes ​​​⟨​​ ​v​ b​​​(​​ ​t − ​t​ 0​​ _ T  ​​)​​​⟩​​​​ at a fixed duration/band lifetime T 
(where t0 is the start of the band propagation); this is one of the 
standard quantities used to characterize crackling noise bursts. 
We find that short-lived bands exhibit an approximately parabolic 
shape, while considering bands with a longer T results in ​​​⟨​​​v​ b​​​(​​ ​t − ​t​ 0​​ _ T  ​​)​​​⟩​​​​ 
displaying an increasingly flattened profile (red symbols in Fig. 3).

How can one theoretically understand the origin and properties 
of the crackling noise-like vb(t) band propagation velocity signals, 
exhibiting such average temporal velocity profiles? The starting 
point of our analysis is the empirical observation that the bands tend 
to propagate essentially as “rigid bodies,” and, hence, a description 
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based on a single degree of freedom, the band position xb, is appro-
priate. This rigid body then moves via overdamped dynamics due to 
the forces acting on it. As the sample is strained with a constant 
strain rate ​​ϵ ̇ ​​, it is natural to assume that the band position is driven 
at a rate ​c  ∝ ​ ϵ ̇ ​​. This is countered by a stiffness term k, which includes 
the hardening of the sample, which can be incorporated in the sim-
plest form as a linear dependence to the strain k ∝ ϵ. As the band 
propagates along the long axis of the specimen, it samples the ran-
dom dislocation microstructure it encounters during motion, result-
ing in a position-dependent random force W(xb), with Brownian 
correlations, 〈W(xb)W(xb′)〉 = ∣xb − xb′∣. Collecting these terms, one 
arrives at an equation of motion for xb, which has the same form 
as the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model (38) 
used as the mean-field description of domain wall depinning in dis-
ordered ferromagnets, i.e.

	​​  d ​x​ b​​ ─ dt  ​  =  ct − k ​x​ b​​ + DW(​x​ b​​)​	 (2)

where D is the disorder strength. The ABBM model (Eq. 2) is known 
to produce crackling noise or avalanches with power law–distributed 
sizes and durations (31, 32), characterized by c-dependent expo-
nents; for instance, the size distribution scales as ​P(S ) ∼ ​ S​​ −(3−​ ~ c ​)/2​​, 
where ​​ ~ c ​  =  c / D​ is the normalized driving rate. Following (39), Eq. 2 

can be transformed to a form including a time-dependent noise 
term

	​​  d ​v​ b​​ ─ dt  ​  =  c − k ​v​ b​​ + ​√ 
_

 2D ​v​ b​​ ​ ξ(t)​	 (3)

with  being a white noise term with unit variance 〈(t)(t′)〉 = (t − 
t′). This Eq. 3 has the advantage of allowing one to analytically solve 
quantities like the average burst shape in the k = 0, c = 0 limit, result-
ing in an inverted parabola, while a finite k gives rise to a flattening 
of the shape for long avalanches (39).

Comparing the model and the experiments
To compare this model with experimental data, we simulate it by 
“nucleating bands” at random initial positions ​​x​b​ i ​  ∈  (0, L)​ within a 
sample of length L, and let them propagate in a random direction 
according to Eq. 3. To mimic effects due to the finite length of the 
sample, we consider only bands that stop before the end of the sam-
ple. This leads to an L-dependent cutoff to the “avalanche” distribu-
tion; in addition, a cutoff could, in principle, be due to k in Eq. 3, 
but, here, k is sufficiently small such that the L-dependent cutoff 
dominates. This then results in a scaling form for the avalanche size 
distribution (see Materials and Methods for details)

	​​ P(S ) ∝ ​(​​1 − ​ S ─ L ​​)​​ ​S​​ −(3−​ ~ c ​)/2​​​	 (4)

Fixing the model parameters to ​c  = ​ c​ 0​​​ϵ ̇ ​​ (where c0 = 50 m/s), k = 
k0ϵ (where k0 = 650 s−1), and D = 700 mm/s3 reproduces the exper-
imentally seen band velocities well (Fig. 2), both in terms of the 
behavior with increasing strain rate and strain. The number of 
bands generated with a given strain and strain rate is proportional 
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Fig. 2. Average band velocities. Top: The average velocities ​​ ̄  ​v​ b​​​​ of the bands de-
crease with strain ϵ. The inset shows the average velocities averaged over the 
strain rate ​〈​ ̄  ​v​ b​​​〉​ increasing as a power law (red symbols for experiments and blue for 
the ABBM model; the error bars represent the SD of band velocities obtained with 
a given strain rate). The black line is a power law ​〈​ ̄  ​v​ b​​​〉  ∼  ​​ϵ ̇ ​​​ p​​ with p = 0.6. Bottom: The 
average velocities (binned to strain intervals) scaled with ​​​ϵ ̇ ​​​ p​​ decrease exponen-
tially with strain (red symbols for experiments and blue for the ABBM model; the 
error bars represent the SD of band velocities in the given strain bin). The black line 
is an exponential relation ​​​ ̄  ​v​ b​​​ ​​ϵ ̇ ​​​ −p​  ∼  exp​(​​− ​ ϵ _ ​ϵ​ 0​​​​)​​​​ with ϵ0 = 0.16.

0 0.1 0.2
0

50

100

150

200

250
A B

C

Fig. 1. Features of deformation bands from speckle images. (A) The raw sub-
tracted speckle images showing two simultaneous PLC bands (top one during 
nucleation). (B) The stress-strain curves showing the responses of the samples and 
the serrations. (C) The effective strain rate map (time derivative of the speckle 
image intensity) ​​​ϵ ̇ ​​ spec​​​ (see Materials and Methods for details) for one band inclina-
tion (top), the stress signal (middle), and the band velocity signals (bottom).
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to the statistics of the experiments. All this is achieved with a very 
simple linear proportionality of the model parameters to the exper-
imental parameters ϵ and ​​ϵ ̇ ​​.

The model also leads to an excellent agreement in terms of the 
velocity profiles (Fig. 3): inverted parabola for small T and increas-
ingly flattened shape for larger T. The slight asymmetry (29, 40) 
seen in the experimental profiles, where the velocities are slightly 
larger towards the start of the band lifetime, is naturally not repro-
duced by the model.

We then proceed to a more extensive statistical characterization 
of the band propagation velocity bursts, again exploiting the re-
markable analogy with standard crackling noise systems. First, we 
look at the scaling of the avalanche size S with the duration T in the 
experiments and in the simulations (where the parameters were fitted 
to reproduce the band velocity behavior with increasing strain and 
strain rate). Typically, one would expect 〈S〉 ∼ T2 (31, 32) from the 
ABBM model but, here, the finite sample of length L = 28 mm (and 
the exclusion of bands with S < 2 mm: see Materials and Methods 
for details) restricts this scaling. In addition, with different strains 
and strain rates, one would have different prefactors, and averaging 
over these would not result in the typical scaling form. After per-
forming this average, we see very similar behavior of 〈S〉 increasing 
with duration (Fig.  4A) for both the experiments and the ABBM 
model, and the increase is slower than 〈S〉 ∼ T2.

To connect the predictions of the ABBM model to the stress-
strain curve, one can also study the scaling of the average stress-drop 
size 〈〉 from the stress-strain curves with duration. The one-to-one 
correspondence between deformation bands and stress drops is 
broken by the observed multiple simultaneously propagating bands 
(Fig. 1), but the average scaling seems to be similar for the avalanche 
sizes and stress-drop sizes (Fig. 4A). The shorter stress-drop dura-
tions are due to the simultaneous bands and the short S < 2 mm 
bands that are otherwise neglected from the analysis.

The prediction for the avalanche size distribution in a finite-size 
sample (Eq. 4) has a driving rate–dependent exponent ​(3 − ​ ~ c ​ ) / 2​. 
However, as we are again observing bands at different strains and 
strain rates, it is easier to consider a distribution ​​P(S ) ∝ ​(​​1 − ​ S _ L​​)​​ ​S​​ −α​​​ 
with some exponent . The experimental data seem to follow this 
distribution quite well (Fig. 4B) and maximum likelihood estima-
tion gives  = 0.99. The same is true for the ABBM model, where a 
slightly lower estimate of  = 0.73 is obtained. This disparity in the 
exponent values is likely due to the simplicity of the model parame-
ters (linearity of c and k in ​​ϵ ̇ ​​ and ϵ) and the fact that the parameter 
values were fitted just to reproduce the behavior with increasing 
strain and strain rate.

The instantaneous (band) velocity distribution in the ABBM 
model is known to be of the form (33, 38, 39, 41)

	​ P(​v​ b​​ ) = ​  ​ ~ k ​ ─ Γ(​ ~ c ​) ​ ​v​b​ ​ ~ c ​−1​ exp(− ​ ~ k ​​v​ b​​)​	 (5)

where ​​ ~ k ​  =  k / D​ is the normalized stiffness term and  represents 
the Gamma function. As the observed size distribution suggests ​​ ~ c ​​ to 
be around unity, one would expect an exponential band velocity 
distribution ​P(​v​ b​​ ) = ​ ~ k ​exp (− ​ ~ k ​​v​ b​​)​. This is what we see in Fig. 4C, 
where the distribution of experimental band velocities follows an 
exponential distribution for velocities between 20 and 110 mm/s. 
For the velocities obtained from the ABBM model, the exponential 
distribution is observed for velocities from 20 to 200 mm/s. The 
parameter ​​ ~ k ​​ depends on strain, but the best fit to the distributions 
is obtained with ​​ ~ k ​ ≈  0.04​.

DISCUSSION
We have studied the statistics of the PLC deformation bands by us-
ing a fast imaging technique and by a simple mean-field model of 
avalanche dynamics. Empirically, we found that the average band 
velocities scale on average as ​​​   ​v​ b​​​  ∝ ​​ ϵ ̇ ​​​ p​ exp​(​​ − ​ ϵ _ ​ϵ​ 0​​​​)​​​​ with p = 0.6 and ϵ0 = 0.16 
and exhibit a flattening of the average velocity profile ​​​⟨​​ ​v​ b​​​(​​ ​t − ​t​ 0​​ _ T  ​​)​​​⟩​​​​ with 
increasing band duration. These features can be reproduced with 
the ABBM model by taking the strain rate to represent the driving 
term and strain to represent the stiffness term, the strain hardening. 
The material properties are also contained in the disorder strength. 
Another key idea is constraining the simulated bands to the finite 
size of the sample to match the statistics with the experiments.

The finite size of the sample and the dependence of the model 
parameters on both strain and strain rate hide the known scaling 
form of the avalanche size. However, our simulations show that 
both the average PLC band propagation distances and ABBM ava-
lanche sizes scale similarly with duration. The same scaling can also 
be seen for the stress-drop sizes in the stress-strain curve. Although 
the one-to-one correspondence between bands and stress drops is 
lost with multiple simultaneous bands, the average scaling remains 
the same.

We analytically show that the finite size of the sample introduces 
a ​​​(​​1 − ​ S _ L​​)​​​​ cutoff to the known power-law avalanche size distribution. 
Both the PLC band propagation distances and the simulated bands 
from the ABBM model follow this ​​P(S ) ∼ ​(​​1 − ​ S _ L​​)​​ ​S​​ −α​​​ distribution 
with exponents  close to unity. Based on this, one would then ex-
pect the instantaneous band velocity distribution to follow an expo-
nential distribution, which is what we see in the experiments and in 

0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

Fig. 3. Averaged band velocity profiles for a fixed duration. The averaged band velocity profiles for four different duration bins (red) showing the evolution of the 
shape from an inverted parabola to almost a flat constant velocity shape with increasing duration. As expected from the analytic results, this is reproduced by the ABBM 
model (blue).
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the simulations. The ABBM model is commonly studied close to the 
quasistatic limit c → 0; however, we have shown here that it can be 
also used to explain the behavior of fronts under strong drive, here 
the deformation bands. Looking at these results from the viewpoint 
of classical theories of the PLC effect, how to modify and adapt such 
models of DSA (42) so that they correctly reproduce the kind of sto-
chasticity seen in the band dynamics is an important question. This 
may be restated so that the “correct” model should be able to reduce 
to the ABBM used here.

What our results show is that interacting, mobile dislocations 
create avalanches of deformation in metal alloys. Here, the neces-
sary conditions for this are temperature and strain rate values within 
a specific window such that propagating or type A PLC bands are 
observed. Given this, the avalanches follow the paradigm of the 
mean-field–like ABBM model. The eventual stopping of the band is 
a random fluctuation and depends on the local, heterogeneous ma-
terial properties. Thus, the physics of these bands arises from a mix-
ture of external drive, local randomness, and the coarse-grained, 
collective response of many dislocations. More work is needed in 
understanding the implications to other PLC band types, and what 
the practical predictions or consequences are for alloys with differ-
ent composition (“disorder”) and for samples of different sizes. It is 
likely that the ABBM exponent ​​ ~ c ​​ is material dependent. A wider 

look suggests considering the eventual interaction physics of multi-
ple bands present in the sample, where their interaction with others 
and with the sample or disorder would be crucial (43). In the same 
vein, propagating bands of deformation with serrations of the 
stress-strain curve are also seen in the plastic deformation of amor-
phous materials (44, 45). An obvious question would be if these also 
can be shown to follow ABBM-like dynamics with a careful study, 
but then again, if such bands do not follow this simplest paradigm, 
that is also of profound interest.

MATERIALS AND METHODS
Experimental methods
The laser speckle technique (35) was used to observe the bands in a 
commercial aluminum alloy AW-5754 sample. The samples were 
laser cut to a flat dog bone shape with the dimensions 28 mm by 
4 mm by 0.5 mm for the gauge volume. The samples have a poly-
crystalline structure with an average grain size of 38 ± 14 m. The 
experimental setup is illustrated in Fig. 5.

The samples were tensile-loaded with Instron ElectroPuls E1000 
using an Instron Dynacell load cell with a constant displacement 
rate. The stress and strain were calculated from the displacement 
and force data provided by the machine. These were recorded with 
an acquisition rate of 500 Hz, and the samples were held using an 
initial force of 4 N.

The speckle pattern was recorded with ProtoRhino FlexRHINO 
DynaMat system, which includes a high-speed camera, a laser, and an 
field-programmable gate array chip–based unit for data acquisition 
and storage. The camera had an electronic freeze-frame shutter and a 
Navitar MVL7000 objective with a macro zoom lens, an aperture of 
f/2.5, and a spatial resolution of 54 m. The laser used was a collimated 
laser diode with a wavelength of 638 nm and a power of 200 mW. The 
acquisition rates varied around 0.5 to 2.0 kHz.

The speckle images were analyzed using the equal interval sub-
tracting method [similar to (35)] where the subtraction was done 
for consecutive images or with the highest acquisition rate for every 
other image. A one-dimensional (1D) projection was taken from 
these subtracted images in a direction perpendicular to the band 
with the two different band inclinations. This provides two differ-
ent effective strain rate maps, where the measured quantity ​​​ϵ ̇ ​​ spec​​​ 
corresponds to the time derivative of the speckle image intensity.

Fig. 5. The experimental setup. The sample is tensile-loaded and simultaneously 
imaged using the laser speckle technique. Here, the sample is illuminated by a dif-
fuse laser at a slight angle, and the produced speckle pattern on the sample surface 
is imaged using a high-speed camera. Photo credit: Tero Mäkinen.
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Fig. 4. Statistics of the avalanche sizes. (A) The average avalanche size 〈S〉 for a 
fixed duration T for the experiments (red) and the ABBM model (blue). The third 
curve (magenta) is the fixed duration average for the size of the stress drop  in 
the serrated stress-strain curve. (B) The avalanche size distribution from the exper-
iments (red) and the ABBM simulations (blue). The black line represents the expected 
scaling of the distribution ​​P(S ) = A​(​​1 − ​S _ L ​​)​​ ​S​​ −α​​​ with  = 1, ​A  = ​​ (​​ ​​S​ 0​​ _ L ​ + ln ​ L _ ​S​ 0​​​ − 1​)​​​​ 

−1
​​, and 

S0 = 2 mm. (C) The distribution of band velocities from the experiments (red) and 
the ABBM simulations (blue). The black line represents the expected exponential 
distribution ​P(​v​ b​​ ) = ​ ̃ k ​ ​e​​ −​ ̃ k ​​v​ b​​​​ with ​​ ̃ k ​  =  0.04​.
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As the band angles and widths were observed to remain very 
close to constant (the band widths are 0.9 ± 0.1 mm, which is of the 
order of the sample thickness 0.5 mm), these effective strain rate 
maps were used to track the band movement as a 1D rigid body. 
The maximum value of ​​​ϵ ̇ ​​ spec​​​ around the visible band corresponds to 
the leading edge of the band, and this was used as the band position 
xb, therefore also determining the propagation distance S and band 
duration T. As we are considering type A band dynamics, a propa-
gation distance cutoff of 2 mm was imposed. Bands that propagate 
less than 2 mm correspond more to the type B regime of non-
propagating bands and were excluded from the analysis. The band 
velocity signal vb was then obtained by numerically differentiating 
the band position signal, and the average band velocity was calculated 
simply as ​​   ​v​ b​​​  =  S / T​.

There are sometimes multiple simultaneous bands present in the 
sample (see Fig. 1, A and C) that can collide with each other. These 
collisions usually lead to the disappearance of both bands (except for 
a few cases right before the sample failure where bands with different 
inclinations can interact; for more details, see movie S1), and there-
fore, we have chosen to consider each band as an independent event.

Fitting the model parameters
The model parameters c, k, and D were fitted to the experimental 
data in the following way. First, a value for c was chosen high 
enough (with some arbitrary k and D) so that the average band 
velocities ​〈​   ​v​ b​​​〉​ behave with the correct exponent (or slope) as a func-
tion of the strain rate ​​ϵ ̇ ​​. After that, the value of k was chosen so that 
the normalized average band velocities ​​   ​v​ b​​​ ​​ϵ ̇ ​​​ −p​​ behave with the cor-
rect slope as a function of the strain ϵ. If the behavior of ​​   ​v​ b​​​ ​​ϵ ̇ ​​​ −p​​ had a 
strong strain rate dependence, c was increased and the value for k 
was chosen again. Last, the value for D was chosen so that that 
the actual values (not just the slopes) of ​​   ​v​ b​​​ ​​ϵ ̇ ​​​ −p​​ best fit the experi-
mental data.

In the end, all three of the values were perturbed around the 
chosen values to make sure that the values represent a local minimum of 
the difference between the simulation results and experimental data.

Derivation of the avalanche size distribution
One can calculate the effect of the finite sample length on the ava-
lanche size distribution or, in other words, the band propagation 
distance by a simple construction. Nucleating bands at a random 
position on the 1D sample, letting them propagate, and constrain-
ing the propagation to the size of the sample directly give the cutoff 
induced by the finite size sample.

Let Y be the event of a band starting at a certain position ​​
x​b​ i ​  ∈  (0, L)​ and X be the event of the band stopping at a certain 
position ​​x​b​ f ​  ∈  (0, L)​. As we see in the experiments a flat distribution 
of the starting positions, the joint probability is then

	​​​ P​ XY​​​
(

​​ ​x​b​ f ​, ​x​b​ i ​​
)

​​  = ​ P​ X∣Y​​​
(

​​ ​x​b​ f ​, ​x​b​ i ​​
)

​​ ​P​ Y​​​
(

​​ ​x​b​ i ​​
)

​​  = ​ 
​P​ X∣Y​​​(​​ ​x​b​ f ​, ​x​b​ i ​​)​​

 ─ L  ​​​	 (6)

and one can get the distribution of the travel distance S by calculat-
ing two convolutions

	​​
​​P​ S​​(s ) = ​∫​x​b​ f ​=0​ 

​x​b​ f ​=L−s
 ​​ ​P​ X∣Y​​​(​​ ​x​b​ f ​, ​x​b​ f ​ + s​)​​ ​P​ Y​​​(​​ ​x​b​ f ​ + s​)​​d ​x​b​ f ​+​

​    
​​∫​x​b​ f ​=s​ 

​x​b​ f ​=L
 ​​ ​P​ X∣Y​​​(​​ ​x​b​ f ​, ​x​b​ f ​ − s​)​​ ​P​ Y​​​(​​ ​x​b​ f ​ − s​)​​ d ​x​b​ f ​​

 ​​	  (7)

The conditional probability is handled most simply by splitting 
it into two portions. After starting, the band goes in either direction 
with equal probability and, as is known for the ABBM model, trav-
els a distance that is power law–distributed. The joint distribution is 
then

	​​​ P​ X∣Y​​​
(

​​ ​x​b​ f ​, ​x​b​ i ​​
)

​​  ∝ ​
{

​​​
​​(​​ ​x​b​ i ​ − ​x​b​ f ​​)​​​​ 

−α
​,
​ 

​x​b​ f ​  < ​ x​b​ i ​
​  

​​(​​ ​x​b​ f ​ − ​x​b​ i ​​)​​​​ 
−α

​,
​ 

otherwise
​​​	 (8)

and the convolutions give

	​​​ P​ S​​(s ) ∝ ​∫​x​b​ f ​=0​ 
​x​b​ f ​=L−s

 ​​ ​s​​ −α​ d ​x​b​ f ​ + ​∫​x​b​ f ​=s​ 
​x​b​ f ​=L

 ​​ ​s​​ −α​ d ​x​b​ f ​  ∝ ​ (​​1 − ​ s ─ L ​​)​​ ​s​​ −α​​​	 (9)

Normalizing this distribution (from a minimum value S0 to L) 
gives the full functional form

	​ P(S ) = ​ 
​(​​1 − ​ S _ L​​)​​ ​S​​ −α​

  ────────────  
​​L​​ 1−α​ − ​S​0​ 1−α​ _ 1 − α  ​ − ​ 1 _ L​ ​​L​​ 2−α​ − ​S​0​ 2−α​ _ 2 − α  ​

 ​​	 (10)

or in the special case of  = 1

	​ P(S ) = ​ 
​(​​1 − ​ S _ L​​)​​ ​S​​ −1​

 ─ 
​​S​ 0​​ _ L ​ + ln ​ L _ ​S​ 0​​​ − 1

 ​​	 (11)

For the special case of k = 0, one can obtain an analytic solution 
for the exponent in the ABBM model as ​α  = ​ 3 − ​ ~ c ​ _ 2 ​​  (31, 32), which 
would here give the avalanche size distribution

	​ P(S ) = ​ 1 ─ 2 ​ ​ 
​(​​1 − ​ S _ L​​)​​ ​S​​ −(3−​ ~ c ​)/2​

  ────────────────  
​​L​​ (​ ~ c ​−1)/2​ − ​S​0​ (​ ~ c ​−1)/2​ _ ​ ~ c ​ − 1 ​  − ​ 1 _ L​ ​​L​​ (​ ~ c ​+1)/2​ − ​S​0​ (​ ~ c ​+1)/2​ _ ​ ~ c ​ + 1 ​

 ​​	 (12)

or in the case of ​​ ~ c ​  =  1​, the one shown in Eq. 11.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/41/eabc7350/DC1
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