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Abstract
Collective motion of dislocations is governed by the obstacles they encounter. In pure
crystals, dislocations form complex structures as they become jammed by their
anisotropic shear stress fields. On the other hand, introducing disorder to the crystal
causes dislocations to pin to these impeding elements and, thus, leads to a
competition between dislocation-dislocation and dislocation-disorder interactions.
Previous studies have shown that, depending on the dominating interaction, the
mechanical response and the way the crystal yields change.
Here we employ three-dimensional discrete dislocation dynamics simulations with
varying density of fully coherent precipitates to study this phase transition − from
jamming to pinning − using unsupervised machine learning. By constructing
descriptors characterizing the evolving dislocation configurations during constant
loading, a confusion algorithm is shown to be able to distinguish the systems into two
separate phases. These phases agree well with the observed changes in the relaxation
rate during the loading. Our results also give insights on the structure of the dislocation
networks in the two phases.

Keywords: Discrete dislocation dynamics, Dislocation pinning, Dislocation jamming,
Machine learning

Introduction
While deforming, crystallinematerials change irreversibly through discrete plastic events,
i.e. avalanches, originating from the collective motion of dislocations – the topologi-
cal defects of the crystal lattice (Papanikolaou et al. 2017). These dislocation avalanches
exhibit scale invariance with their distributions of sizes and durations encompassing
several orders of magnitude (Zaiser 2006). This has lead to the discussion of plastic
deformation as a non-equilibrium phase transition: below critical loading, the disloca-
tions merely jump from one configuration to another, and the actual yielding of the
crystal occurs at the critical point of diverging avalanches and uninhibited flow of dis-
locations. However, the dislocation movement has a highly complex nature arising from
the interplay of the evolving, anisotropic interaction field produced by other disloca-
tions and possible pinning field caused by disorder inside the crystal (Ardell 1985; Miguel
et al. 2002). Thus, the collective dislocation behaviour is dictated by two competing
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phenomena − dislocation-dislocation interaction induced jamming and dislocation-
obstacle induced pinning − that can be hard to distinguish from each other although they
have fundamental differences (Ispánovity et al. 2014; Sparks and Maaß 2018; Salmenjoki
et al. 2020).
Indeed in the case of dislocation jamming of pure dislocation systems, the interact-

ing dislocations enter a state of ’extended criticality’ where the system shows no distinct
critical point but seems to recede in the constant vicinity of the transition independent
of the loading force (Ispánovity et al. 2014; Lehtinen et al. 2016). However, crystals are
rarely completely pure, and introducing some disorder − such as precipitates − to the
crystal to impede dislocation motion can increase the crystal’s mechanical strength, and
alter the criticality and ensuing avalanche behaviour of the system (Pan et al. 2019; Zhang
et al. 2017). The key point here is that obstacles to dislocation motion may change the
system behaviour by inducing dislocation pinning, which, if strong enough, results in a
well-defined critical point of a depinning transition of the dislocation assembly (Ovaska
et al. 2015).
Our recent study of 3D discrete dislocation dynamics (DDD) simulations of FCC alu-

minium with the inclusion of stationary fully coherent precipitates (see Fig. 1) showed
that, by systematically increasing the strength or density of the precipitates, the sys-
tem goes from the phase of dislocation-interaction dominated jamming to disorder-
dominated pinning, and this transition can be observed in both constant load simulations
as well as when quasistatically ramping up the external stress (Salmenjoki et al. 2020). The
related phenomenology depends on the loading protocol employed. For the quasistatic
stress ramp simulations, one observes in general a sequence of strain bursts with a broad
size distribution. In the jamming-dominated regime, the average strain burst size grows
exponentially with the applied stress, while in the pinning phase we found a critical stress
value where the average strain burst size exhibits a power-law divergence. Here, we focus

Fig. 1 Snapshot of a simulated system. The parameters were set to ρp = 1020 m−3 and the image is taken at
t = 10−9 s = 2.6 · 105 GM, whereM = Medge = Mscrew



Salmenjoki et al. Materials Theory             (2020) 4:5 Page 3 of 16

on the creep-like constant loading simulations with varying precipitate density ρp. There,
the general behaviour in both of the phases, i.e. jamming and pinning, is on the one hand
similar: In both phases the systems appear to possess a critical stress σc

(
ρp

)
where one

observes a power-law relaxation of the shear rate, ε̇ ∼ t−θ . On the other hand, the relax-
ation becomes more rapid (larger θ ) as the systems move further into the pinning phase
(Miguel et al. 2002; Salmenjoki et al. 2020). This is illustrated in Fig. 2.
An open question regarding the phase transition from jamming to pinning is how

exactly does it alter the dislocation structures in the systems? Furthermore, despite the
apparent similarities in the response (i.e. power law relaxation) of the dislocation systems
in the different phases, could one be able to distinguish them by their dislocation struc-
tures without specific a priori knowledge of the transition? To address this problem, we
use machine learning (ML). ML is proving to be a flexible and useful tool for physics
and materials science (Mehta et al. 2019; Papanikolaou 2018; Papanikolaou et al. 2019;
Steinberger et al. 2019; Yang et al. 2020; Zhang and Ngan 2019; Zdeborová 2017). Using
ML for the detection of phase transitions in statistical physics has given fruitful results
(Carrasquilla and Melko 2017; Hu et al. 2017; Shirinyan et al. 2019) and here we applied
the unsupervised ’confusion’ scheme introduced in Van Nieuwenburg et al. (2017). With
the confusion algorithm, the only assumption one needs to make is that the system
exhibits a phase transition in some control parameter range − in our case, the control
parameter being the precipitate density ρp − and the algorithm should be able to find the
critical value ρc

p by using the states of the systems as input.
Here we followed the evolving systems by concentrating on both the fine details and the

long-ranged structures of the dislocation network. To accomplish this we computed the
dislocation junction lengths, geometrically necessary dislocation (GND) density and dis-
location correlation, and used these separately to describe the microstructure for the ML
algorithm. Our results show that the algorithm was able to find the phase transition from
all of the used descriptors and the discovered values of ρc

p are in perfect agreement. There-
fore, as the dislocation structures in the two phases evolve in notably different ways, we
were able to quantify some of the changes in the systems by analyzing the used structural
descriptors. The rest of this paper is structured as follows: the implementation of the ML

Fig. 2 Simulations of power-law relaxation of dislocation systems with varying ρp . The figure shows the
average strain rate during constant loading with σc(ρp). The relaxation becomes more rapid and the
transient time before power-law decay of ε̇ decreases as ρp is increased above some threshold value of ρc

p
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method, along with the details of the DDD simulations and our approaches to character-
ize the dislocation structures, are presented in the next section. After the methodology,
we proceed to show results obtained with the ML algorithm and we finish with some
discussion.

Methods
DDD simulations

We study the effect of varying the precipitate density ρp on the nature of the collective
dislocation dynamics within 3D DDD simulations using our modified version of the Par-
aDiS code (Arsenlis et al. 2007; Lehtinen et al. 2016). ParaDiS implements the dislocation
interactions by approximating the continuous dislocation lines by a set of straight dislo-
cation segments. The segments interact through the stress fields arising from the linear
elasticity theory, while the diverging fields at dislocation cores are replaced by the use of
results from molecular dynamics simulations. To cope with the long-range elastic forces,
ParaDiS uses multipole expansion. Our version of ParaDiS also enables including disorder
to the system, in the form of spherical precipitates (Lehtinen et al. 2016). The precipitates
are frozen pinning sites for the dislocations that produce a short-range radial force

F(r) = 2Are−r2/r2p

r2p
, (1)

where A is a constant, r is the distance from the precipitate to the dislocation and rp is the
radius of the precipitate. In the context of transition from dislocation-dominated jamming
to disorder-dominated pinning, the relevant parameters are the precipitate density ρp and
the precipitate strength A (Salmenjoki et al. 2020).
For our simulations, we set parameters to approximate those of FCC aluminium with

precipitates of fixed strength and size in a simulation box with periodic boundaries − A
was especially chosen so that the system exhibits both jamming and pinning-dominated
response depending on ρp (Salmenjoki et al. 2020). The parameters are presented in
Table 1. The simulations started with two relaxation periods, the first with only the dislo-
cation networks and the second with also the precipitates present, to ensure the systems
reached meta-stable states. After the initial relaxation, the systems were driven by apply-
ing a constant external stress σ . Depending on themagnitude of driving force, the systems
tend to either get stuck (exponential decay of strain rate ε̇ with small σ ) or reach lin-
ear creep-like conditions (constant ε̇ with large σ ). However independent of precipitate
density, all of the systems possess also a critical value σc (dependent on ρp, see Table 2)
that leads to a power-law relaxation of ε̇, as seen in Fig. 2 (Miguel et al. 2002; Salmenjoki
et al. 2020). The effect of precipitate density is seen in the rate and starting time of the
power-law decay: there is a transition between the behaviour of less disordered systems
with ε̇ ∼ t−0.3 and more disordered systems with the more rapid decay starting earlier. To
see how this transition affects the system, we characterized the dislocation structure and
observed its evolution during the constant stress loading with σ = σc.

Characterizing dislocation structures

In the characterization of the dislocation structures, we used three distinct descriptors.
First, we exploited the fact that disorder causes the dislocations to stretch when parts
of the dislocations get pinned. With this in mind, we measured the length of dislocation
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Table 1 Simulation parameters

Parameter Value

System size L 4μm

Initial dislocation density ρ0 2.0 × 1012 m−2

b 0.286 nm

rcore 5.0 b

Maximum segment length 80.0 b

G 26GPa

ν 0.35

T 300 K

ParaDiS mobility function FCC_0b

Medge 10000.0 (Pa s)−1

Mscrew 10000.0 (Pa s)−1

A 2.3 · 10−19 Pam3

rp 28.6 nm

links between two junction nodes (Sills et al. 2018) along the dislocation segments lalong,
and compared this to the shortest possible length between the nodes lshortest. Thus, we
define parameter J,

J = lalong − lshortest, (2)

which represents the roughness of a dislocation and by collecting its distribution inside a
system provides information on the dislocation structure. As an example, Fig. 3a shows
the distribution of J in the simulated systems.
The second used descriptor was GND density (Arsenlis and Parks 1999; Steinberger

et al. 2019). We computed the local GND density (the total GND density is constant
throughout the simulation (Bulatov et al. 2000)) by first evaluating the Nye tensor α in
voxels by

α = 1
Vvoxel

∑

i
bi ⊗ li, (3)

where Vvoxel is the voxel volume, b is the Burgers vector, l is the line direction giving also
the segment length and the sum is over all dislocation segments i inside the voxel. Then,
the GND density ρGND was calculated from the Nye tensor. The resulting GND density
fields, for instance the one with 10× 10× 10 voxels illustrated in Fig. 3b, are quite system
specific, and as we are interested especially in the changes in the dislocation structure, we

Table 2 The used critical values of σc with different values of ρp

ρp
[
m−3] σc

[·107 Pa]

1.0 · 1018 1.10

2.0 · 1018 1.25

5.1 · 1018 1.40

1.0 · 1019 1.70

2.0 · 1019 2.25

5.1 · 1019 3.50

1.0 · 1020 4.50

2.0 · 1020 6.25

4.1 · 1020 9.00

1.0 · 1021 14.0
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Fig. 3 Different ways to measure the dislocation structure. a Distribution of dislocation junction lengthening
J (Eq. 2) in single systems at t = 2.6 · 105 GM. The first bin also includes junctions with J = 0. b An example of
internal GND density at t = 2.6 · 105 GM in a system with ρp = 1020 m−3. c Dislocation spacing correlation
according to Eq. 4 in single systems at t = 5.2 · 106 GM

focused on the evolution of GND density, i.e. ρ′
GND(t) = ρGND(t) − ρGND(0). Moreover

to remove the effect of periodic boundaries, we took the Fourier transform of ρ′
GND(t) as

we collected the data.
As the third and final descriptor, we calculated the dislocation spacing correlation

according to (Csikor et al. 2007)
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C(r) =
(

d
dr

L(r)
)

/
(
4πr2ρ

)
, (4)

where ρ is the total dislocation density and L(r) is approximated by computing the
mean line length in spheres of radius r centered at random points along the dislocation
structure. We note that in the case of 2D DDD simulations, the average dislocation-
dislocation correlation function changed drastically whenmobile solutes (pinning points)
were introduced to the system (Ovaska et al. 2016). Here we focused on longer-range cor-
relations to avoid possible effects caused by the assigned segment length restrictions of
the computations. Figure 3c shows the dislocation correlation in systems with varying ρp.
We proceed by collecting the descriptors listed above during the loading with σ =

σc(ρp) at intervals of t = 10−9 s = 2.6 · 105GM, where the times are given in the units of
shear modulus G times the dislocation mobility M = Medge = Mscrew. Due to computa-
tional challenges of 3D DDD simulations, we simulated only 19 systems for every value of
ρp and σc. The time reached in every simulation was at least 4.7 · 106GM although some
systems were able to run even longer in their allocated simulation time.

Unsupervised learning of the phase transition

To observe the transition from dislocation jamming to pinning in an unsupervised man-
ner, we used the confusion method presented in (Van Nieuwenburg et al. 2017). The idea
is that, assuming the studied system experiences a transition in a control parameter range
(in our case

[
ρ0
p , ρ1

p

]
) with some value ρc

p, one expects that the different systems below
and above ρc

p are distinguishable from each other. Thus by appointing trial values ρ′
p in

the range
[
ρ0
p , ρ1

p

]
, the sample systems are assigned to classes depending on whether ρp is

below or above ρ′
p. This way, a machine learning classifier trained on the trial samples in

supervised fashion should perform best near the critical point ρ′
p ≈ ρc

p where the systems
are truly distinguishable. Correspondingly further from ρc

p, the classifications should get
worse as some of the samples are wrongly labeled. If for instance a system was in jamming
state (with ρp < ρc

p), trial value ρ′
p < ρp would lead to the system being mislabeled to the

pinning state with samples that actually belong to the pinning state. Then this labeling
would be especially challenging for the classifier to learn because some of the samples in
jamming state should be classified as jamming but some as pinning - therefore the con-
fusion. Observing the accuracy of the classification in the range

[
ρ0
p , ρ1

p

]
should therefore

be somewhat W -shaped, as the accuracy is good at the transition but also at the begin-
ning and at the end of the range (as large majority of the samples are labeled to one class,
the classifier gets high score by simply predicting always the majority class).
As we were dealing with a data set of 190 systems with more than one thousand of

collected features, we applied some dimensionality reduction before teaching any classi-
fier. The three distinct data sets (different descriptors) were cast to lower dimensions by
principal component analysis (PCA). In PCA, every feature of the data is first scaled to
zero mean and unit variance, and then the entire dataset is represented by n orthogonal
linear combinations of the original data which maximize amount of explained variance.
This happens in descending order, so that with the first principal component (PC), the
explained variance is the largest. Figure 4 already shows that by projecting the data to the
space of the two first PCs, there is a rather smooth transition in dislocation structures
from less to more disordered landscapes with all of the used descriptors.
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Fig. 4 The systems represented by the two first principal components. The descriptors are a junction
lengthening b GND density change and c dislocation correlation collected during the simulation time
interval. The coloured regions come from a fit of bivariate normal distribution on the data sets of different ρp
to visualize the differences between them

Supervised classifier for the confusion method

For a classifier, our choice was based on linear discriminant analysis (LDA) (Bishop 2006).
In this simple case of 2-class classification, LDA builds one linear decision boundary into
the input space according to
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y(x) = wTx + w0, (5)

where x is the feature vector of a sample,w andw0 are the weights and bias of the classifier
and y(x) = 0 is the boundary. We used the implementation by scikit-learn (Pedregosa et
al. 2011), that computes the boundary parameters by assuming that the samples inside
different classes are Gaussian distributed, i.e. probability of a sample with features xwhen
belonging to class k is

P(x|y = k) = 1
(2π)d/2|�k|1/2 exp

(
−1
2
(x − μk)

T�−1
k (x − μk)

)
(6)

where d is the length of x,μk is the class-specificmean of features and�k is the covariance
matrix. Moreover to obtain a linear boundary, the different classes are assumed to have
identical covariance matrices, so in our case of two classes, k = −1 or k = 1,�−1 = �1 =
�. The weights for the decision boundary are obtained by applying the Bayes theorem,
as at the boundary the probabilities of different classes given the sample are equal P(y =
−1|x) = P(y = 1|x) and, thus, the log-probability ratio is

log
(

P(y = 1|x)
P(y = −1|x)

)
= log

(
P(x|y = 1)P(y = 1)

P(x|y = −1)P(y = −1)

)
= 0. (7)

From this, the final weights, w and w0, are obtained by substituting the probability
distribution of Eq. 6 and comparing to Eq. 5,

(μ1 − μ−1)
T �−1x − 1

2

(
μT
1 �−1μ1 − μT−1�

−1μ−1
)

+ log
(

P(y = 1)
P(y = −1)

)
= 0 (8)

The LDA classifiers were evaluated by the straightforward accuracy, i.e. score S = number
of correctly predicted test samples / number of test samples, and trained by 2-fold cross-
validation to provide some tentative confidence intervals.

Results
The confusion curves with the different dislocation structure descriptors in Fig. 5a show
the expectedW -shape. What is striking, is that every curve shows a possible transition in
the form of local maximum at the same spot, ρc

p ≈ 3 · 1019 m−3. Moreover, the classifying
accuracy there is extremely good as every descriptor achieved score larger than 0.95 at the
local maximum. Comparing the position of the transition to the relaxation curves with
different ρp of Fig. 2b and their power-law part represented by the exponents θ presented
in Fig. 5b, we see that the relaxation behaviour is distributed nicely to the two phases so
that θ is close to constant on one side (jamming) of the transition, while on the other side
it starts to increase (pinning) (Salmenjoki et al. 2020). Of course with ρp = 5.1 · 1019 m−3

θ seems to still be close to the constant value of the jamming-side of the transition, but
there the error of θ , arising from the fact that the σc used in simulations is impossible to
get spot on to the one producing power-law relaxation, is notably higher than with other
ρp.
The used number of PCs for the best confusion curves (i.e. the curve with the high-

est maximum accuracy somewhere else than the ends of the range) was 5 for junctions
and GND density, and 10 for correlations. Interestingly, the confusion curve obtained
with junction lengthening data shows another distinct maximum near ρp ≈ 3 · 1020 m−3,
although there the accuracy is not as good as at ρc

p. Similar fluctuations from the pureW -
shape are also observed in Fig. 6 which shows the confusion curves with different amount
of PCs used for the classifying task. Basically all of the secondary maxima are positioned
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Fig. 5 The confusion curves compared to the exponent of relaxation a The confusion curves (classifier
accuracy as a function of chosen threshold ρp) of different dislocation structure descriptors reach a
maximum at the same ρp . For these curves, the used number of PCs was 5 for junctions and GND density,
and 10 for correlations. The error bars represent the standard deviation of classifier accuracy in 2-fold cross
validation. b The maximum accuracy coincides quite well with the change in the relaxation rate, depicted by
the exponent θ of power-law part in the strain rate curves of Fig. 2

to the more disordered side with ρp > ρc
p. Most likely this arises from the fact that in

the pinning phase, the systems get more and more pinned with growing ρp yielding faster
relaxation with larger θ causing these systems to possess some distinguishability from
each other despite being in the same phase. This also explains the tendency of slightly
asymmetric W -shaped curves in Fig. 6, as the LDA score does not drop as much in the
pinning phase as in the jamming phase. But as was ensured by the choice of the best
confusion curves, the dominant maximum is indeed near ρc

p.
We can also study how the ability of the confusion scheme to distinguish the two phases

using different microstructure descriptors evolves in time by computing the confusion
curves based on single snapshot structures, presented in Fig. 7. There the classifiers were
trained by using two PCs of the dislocation structure at the specific times. Starting from
the junction lengthening in Fig. 7a, there seems to be a short transient time until the single
time step curves have converged to close to the shape of the best confusion curve in Fig. 5.
This indicates that the junction lengthening shows early on the signs of distinct jamming
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Fig. 6 The confusion curves with different number of principal components. Used features are a junction
lengthening, b GND density change, and c dislocation correlation during the simulation time interval

and pinning phases. On the other hand GND density in Fig. 7b, which was measured
as the difference to the initial density field, shows that the phases are separated well in
the immediate beginning of the driving. However, the information about the transition
is lost if looking at a momentary GND density field compared to one before loading.
Trying the confusion scheme to GND density field without extracting the initial field or
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Fig. 7 The confusion curves with two principal components of single time step snapshot. Used features are a
junction lengthening, b GND density change, c dislocation correlation. The number of collected systems
starts to decrease after t = 4.7 · 106 GM

difference in the field of subsequent time steps yielded no observable phase transition
(not shown here). Finally with the observed dislocation correlation functions in Fig. 7c,
the behaviour is similar as with junction lengthening: There is now a longer time during
which the transition is not observed, but after that the curves start to resemble the best
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confusion curve with maximum at ρc
p. Again, this is quite evident because the correlation

functions focused on long-range structures, so it takes time until the systems have evolved
structures that are noticeably different in the two phases. Notable here is also that the
converged confusion curves are quite flat in the pinning phase.

Discussion
As the results with the unsupervised ML scheme showed, the dislocation configura-
tions can be separated into two phases with different relaxation rates even though the
general response, i.e. the power-law relaxation, is similar in the two cases. The confu-
sion scheme succeeded extremely well, as it was able to achieve accuracy > 0.95 at the
observed transition indicating that the systems where the dislocation-dislocation interac-
tions dominate are significantly different from the precipitate-dominated systems. This
was further supported by the fact that all the three dislocation structure characterization
metrics considered captured the transition happening at the same value of ρc

p where also
the relaxation starts to turn more rapid.
The success of all three descriptors reveals some of the notable differences between dis-

location structures in the two phases. Firstly, the distribution of the junction lengthening
J captures the bowing of the dislocation lines and, clearly, the pinning points cause more
stretching and bowing of junctions than the other possible obstacles, namely the jamming
dislocation structures, as depicted already in Fig. 3a. Secondly, the spacing correlation of
the dislocations,C(r) shows that even long-range structures are slightly affected, although
there the differences seem to arise more from the magnitude (and scaling by the total dis-
location density in Eq. 4) than the shape of the correlation functions which are plotted in
Fig. 3c.
Thirdly, the evolution of the local GND density finds similar structural changes as the

other two descriptors: On one hand, the bowing dislocations are seen as a ’spreading’ den-
sity of GND, while on the other hand with only few precipitates dislocations tend to move
more in their straight forms. This is illustrated in Fig. 8 which shows the probability of
a computational voxel having a non-zero GND density as a function of simulation time
for different ρp. The systems in the jamming phase show more or less constant number

Fig. 8 The probability of finding the GND density inside a voxel to be non-zero during the simulations. The
results averaged over systems with specific ρp . The number of voxels used here was 25 × 25 × 25, but similar
observations were made with other number of voxels as well
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Fig. 9 Confusion curve dependency on the number of GND density voxels. Only slight decrease of the
maximum in the curve is observed depending on the number of voxels (i.e. voxel size from 280b to 3500b)
when measuring GND density

of active voxels as dislocations keep their shape while in the pinning phase the number is
clearly increasing as dislocations bow. This happens despite the fact that the total GND
density stays constant during the simulations. Undoubtedly, the effectiveness of GND
density as a descriptor of the phase transition is also enhanced by the fact that in the pin-
ning phase σc is larger (faster changes in the dislocation structure right in the start of the
simulation) but relaxation is more rapid (more constant structures on longer time-scale).
However as Fig. 9 shows, the confusion scheme seems to be quite robust with respect
to the resolution of GND density computation: even sparse number of voxels reveals the
changes in the evolving structures.
To conclude our findings, we have studied the transition between dislocation-

dislocation interaction dominated jamming and disorder dominated pinning. By tuning
the disorder content through precipitate density and strength, the system changes the
mechanical response and yielding which is also seen in the power-law relaxation rate
during the plastic flow with constant loading. Here we have been able to distinguish the
simulated systems to the two phases of jamming and pinning solely by their dislocation
structures during the constant stress simulations and, thus, highlighted the changes in the
microstructure caused by the phase transition. These results offer two obvious prospects
for future study: first, to conduct further simulations of the borderline case system where
neither dislocation-dislocation nor dislocation-precipitate interaction dominates over the
other. The second one is that our results tell that the dislocation structures are differ-
ent in the two phases. This means that one can correlate these with the most interesting
engineering quantity, the yield strength, possibly on a sample-to-sample basis as well.
One should thus use the dislocation structure -oriented approach in the experimental
verification of the different phases of crystal plasticity and for strength prediction.
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