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Abstract
In this work, we study the damage in crystalline molybdenum material sam-
ples due to neutron bombardment in a primary knock-on atom (PKA) range of
0.5–10 keV at room temperature. We perform classical molecular dynamics
(MD) simulations using a previously derived machine learning (ML) inter-
atomic potential based on the Gaussian approximation potential (GAP) frame-
work. We utilize a recently developed software workflow for fingerprinting and
visualizing defects in damaged crystal structures to analyze the Mo samples
with respect to the formation of point defects during and after a collision cas-
cade. As a benchmark, we report results for the total number of Frenkel pairs (a
self-interstitial atom and a single vacancy) formed and atom displacements as a
function of the PKA energy. A comparison to results obtained using an embed-
ded atom method (EAM) potential is presented to discuss the advantages and
limits of the MD simulations utilizing ML-based potentials. The formation of
Frenkel pairs follows a sublinear scaling law as ξb where b is a fitting parameter
and ξ = EPKA/E0 with E0 as a scaling factor. We found that the b = 0.54 for the
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GAP MD results and b = 0.667 for the EAM simulations. Although the aver-
age number of total defects is similar for both methods, the MD results show
different atomic geometries for complex point defects, where the formation of
crowdions by the GAP potential is closer to the DFT-based expectation. Finally,
ion beam mixing results for GAP MD simulations are in a good agreement with
experimental mixing efficiency data. This indicates that the modeling of atom
relocation in cascades by machine learned potentials is suited to interpret the
corresponding experimental findings.

Keywords: molybdenum, MD simulations, ion beam mixing, materials model-
ing, machine learning methods

(Some figures may appear in colour only in the online journal)

1. Introduction

The design of next generation of fusion machines needs experimental exploration of different
plasma facing materials (PFM) candidates and the support and validation of numerical model-
ing [1, 2]. Molybdenum has been selected as a candidate for a PFM due to its high melting point,
good resistance to deformation, and low sputtering yield under plasma irradiation [3]. Mo is
also used for diagnostic mirrors in fusion machines to deal with the harsh plasma environment
and fluxes of neutrals and neutron radiation [1, 4]. In order to guide PFM experiments and to
understand the mechanism of the interaction of plasma and neutrons with materials, atomistic
simulations based on the molecular dynamics (MD) method can be performed [5–7]. They can
also serve to save laboratory and financial resources for carrying out the PFM experiments.

Transition metals and alloys are traditionally modeled by the embedded atom method
(EAM) potentials in MD simulations [5, 8–10], reproducing many material properties in good
agreement with those measured experimentally. However, EAM and other traditional poten-
tials are limited to fixed functional forms [1, 8] and can wrongly model some point defects
that are energetically unstable, or lack physical meaning in material damaging processes [11].
For this reason, interatomic potentials developed by using machine learning (ML) methods are
now increasingly used to perform MD simulations with an accuracy close to density functional
theory (DFT) [12–14]. These have the advantage that they can be systematically improved
toward the accuracy of the DFT training data set. The goal of the present work is to numer-
ically model the damage in crystalline Mo samples due to irradiation in a fusion reactor by
utilizing the recently developed ML interatomic potential by Byggmästar et al [15]. Hence, we
perform MD simulations to emulate neutron bombardment at intermediate primary knock-on
atom (PKA) energies, providing an understanding about the modeling of the re-crystallization
process after the collision cascade, which has been an issue for numerical simulations based
on fixed functional forms [11, 12].

Our paper is organized as follows: in section 2 we briefly discuss the theory to develop the
machine learned (ML) potential [15] for Mo, and the software workflow for fingerprinting and
visualizing defects in damaged crystal structures (FaVAD) [16, 17] that is applied to quantify
and classify the damage in Mo samples [18]. Our results for the total number of points defects,
Frenkel pairs and atomic displacement are presented in section 3. We examine the limitations
and advantages of our new ML interatomic potential by comparing to MD simulations results
obtained by EAM potentials, as well as the ion beam mixing comparison between the machine
learned MD simulation results and those reported experimentally. Finally, in section 4, we
provide concluding remarks.
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2. Methods

Interatomic potentials based on ML methods are not restricted to an analytical form and can
be systematically improved toward the accuracy of the training data set. In order to model col-
lision cascades, the ML potential must be able to treat realistic short-range dynamics defined
by its repulsive part. In addition, the correct structure of the liquid phase and re-crystallization
process should be well described, to accurately emulate atomic mixing together with defect cre-
ation and annihilation during the collision cascade. In this work, we use the ML interatomic
potential for molybdenum that was recently developed [15] within the Gaussian approxima-
tion potential (GAP) framework [13, 19]. Here, the total energy of a system of N atoms is
expressed as

Etot =

N∑
i< j

Vpair(ri j) +
Nd∑
i

Ei
GAP, (1)

where Vpair is a purely repulsive screened Coulomb potential, and EGAP is the ML contribution.
EGAP is constructed using a two-body and the many-body smooth overlap of atomic positions
(SOAP) descriptor [13]. Nd is the number of descriptor environments for the N-atom system
(i.e. number of pairs for the two-body descriptor and number of atoms for the many-body
descriptor). The ML part of the potential is given by

Ei
GAP = δ2

2b

M2b∑
j

α j,2bK2b(�qi,2b,�qj,2b) + δ2
mb

Mmb∑
j

α j,mbKmb(�qi,mb,�qj,mb), (2)

where δ2
2,mb are prefactors that set the energy ranges of the ML predictions; K2,mb is the kernel

function representing the similarity between the atomic environment of the ith and jth atoms;
α is a coefficient obtained from the fitting process; and �q is the normalized descriptor vector
(DV) of the local atomic environment of the ith atom (see section 2.2). In the computation of
the ML potential the descriptors for two bodies, 2b, are utilized to take into account most of the
interatomic bond energies, while the many-body, mb, contributions are treated by the SOAP
descriptor. More details about the computation of the ML potentials for Mo can be found in
reference [15].

2.1. MD simulations

ML based MD simulations are performed to model neutron bombardment processes at different
PKA energy values to analyze damage in crystalline materials.

We first define a simulation box as a pristine Mo crystalline sample based on a body-
centered-cubic (bcc) unit cell with a lattice constant of a = 3.16 Å according to DFT calcula-
tions for computing the GAP potentials and those reported in the literature [20]. This value is
slightly higher than the experimental measurement [21]. In table 1 we list the size of the numer-
ical boxes used for each PKA value. Then, the numerical sample is prepared by a process of
energy optimization and thermalization to 300 K using the Langevin thermostat, with the time
constant of 100 fs [22]. The room temperature is used in our work to perform numerical simu-
lations as close as possible to the experiments of material damaging [1]. The MD simulation is
started by assigning a kinetic energy (KE) to a Mo atom located at the center of the numerical
sample in a range of 0.5–10 keV of PKA. For each PKA energy value, the projectile travels
on ten different crystal orientation: 〈001〉, 〈110〉, 〈111〉, and 7 cases for 〈r1r2r3〉, where ri are
random numbers uniformly distributed in an interval of [0, 1]. The velocity Verlet integration
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Table 1. Size of the numerical boxes in nm as a function of the impact energy (PKA
energy), which are used in the MD simulations. The lattice constant of the bcc Mo sample
for GAP is a = 3.168 Å at 300 K.

PKA (keV) Num. atoms Box size (nm)

0.5–2 25 392 (7.24, 7.24, 7.55)
5 55 800 (9.51, 9.51, 9.82)
10 104 044 (11.72, 11.72, 12.04)

Table 2. Physical properties of molybdenum (cohesion energy, Ecoh.; melting temper-
ature, Tmelt.; SIA and vacancy formation energies, Ef ; and vacancy migration energy,
Evac.

mig.) obtained by GAP [15] and EAM [10], as reported in the literature [15], and their
comparison to experimental measurements [25].

EAM GAP Expt.

Ecoh. (eV atom−1) −6.82 −6.288 −6.821
Tmelt. (K) 3080 ± 20 2750 ± 10 2895

E〈111〉
f (eV) 7.19 7.56 —

E〈110〉
f (eV) 6.95 7.61 —

E〈100〉
f (eV) 7.18 8.99 —

Eocta
f (eV) 7.56 9.00 —

Etetra
f (eV) 7.35 8.44 —

Evac.
f (eV) 2.55 2.84 3.0–3.24

Evac.
mig (eV) 1.28 1.28 1.35–1.62

algorithm is utilized to model the collision cascade, which is performed for 6 ps, followed by
an additional relaxation time of 4 ps. An electronic stopping correction has been included in
our MD simulations due to the high PKA energy range considered in this work. The electronic
stopping powers Se [23] were obtained from SRIM-2013 [24] using the default values for the
molybdenum.

To explore the advantages and limitations of the new GAP interatomic potential, we com-
pare results to those obtained by the EAM [9, 10] for the same simulation conditions and
a lattice constant of a = 3.147 Å. This MD potential is denoted as EAM in this work and
has previously been applied to study the sputtering of single-crystalline Mo surfaces by Mon

(n = 1, 2, 4) projectiles in the total energy range of 0.125–4 keV. In table 2, we compare
physical properties of Mo obtained by GAP and EAM as a benchmark for our MD simulations.

The MD simulations were done in the High Performance Computing Center of the Max
Planck Institute and the Institutional Cluster of the Stony Brook University by using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [26]. The Quantum
Mechanics and Interatomic Potential package [27] is used as an interface to implement machine
learned interatomic potentials based on GAP [13]. In order to ensure accurate time integration
in the high-energy collision dynamics, we use an adaptive timestep that is implemented in
LAMMPS, with a maximum (tmax) of 4 fs and ensuring that the maximum displacement of the
Mo atoms per step is less than 0.01 Å.

2.2. Identification of point defects and vacancies

The damage in the Mo sample is analyzed by a software workflow for fingerprinting and
visualizing defects in damaged crystal structures (FaVAD) [16, 17], where the local atomic
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environment of the ith atom of the material sample is described by a DV, �ξi. Here, the atom
density around the ith atom is expressed by a sum of a truncated Gaussian density functions
with the difference vector�r i j between the atoms i and j, entering the exponent [19],

ρi(�r) =
neigh.∑

j

exp

(
−|�r −�r i j|2

2σ2
atom

)
f cut

(
|�r i j|

)
, (3)

=

NLM∑
nlm

c(i)
nlmgn(r)Ylm (r̂) , (4)

which is then approximated in terms of spherical harmonic functions, Ylm(r̂), and a set of basis
functions in radial directions gn(r) as c(i)

nlm = 〈gnYlm|ρi〉 [18, 19]. The sum over the order m of
the squared modulus of the coefficients cnlm is invariant under rotations around the central atom
[28]. It is given by

�ξ i
k =

{∑
m

(
ci

nlm

)∗
ci

n′lm

}
n,n′,l

, (5)

where c∗nlm denotes the complex conjugate of cnlm. Here each component k of the vector �ξ corre-
sponds to one of the index triplets {n, n′, l}. The normalized DV�qi = �ξi/|�ξi| is used throughout
this work and calculated within the multi-body descriptor framework called ‘SOAP’, which
implements equations (3) to (5) with the GAP [13].

Once the DVs of all the atoms of the damaged material are computed, we calculate the
distance between the two corresponding DVs, d = d

(
�qi,�q j

)
to the atomic local environment

of a defect free and thermalized material sample [16, 18] as

dM(T) =
√(

�qi − �v (T)
)T
Σ−1(T)

(
�qi − �v (T)

)
, (6)

where �v (T) = 1
N

∑N
i=1�q

i (T) is the mean DV of the defect free sample; and Σ is the associ-
ated co-variance matrix of the DV components [18, 29]. This calculation allows us to identify
atoms outside of lattice positions that are then classified as point defects. The identification
of vacancies is done by defining a numerical sampling grid of N = Nx × Ny × Nz points with
Nx , Ny, Nz being the number of equispaced points in the x, y, and z directions, respectively [18].
This is followed by a computation of the nearest neighbor distance between the position of the
damaged sample atoms and the sampling grid points. Points where the distance to the nearest
atom exceeds a given threshold describe the spatial volume of the identified vacancy [16, 17].

3. Results and discussion

In order to analyze the damage in the Mo sample, we first perform a single MD simulation
at 500 eV on the 〈001〉 velocity direction, with the GAP and EAM potentials for 10 ps of
simulation time. The final frame of the simulation contains the information of the point defects
formed at the lowest PKA energy value of our study. Then, we analyze the damaged Mo sample
by computing the DVs of all the Mo atoms with FaVAD, followed by the comparison to a defect
free sample that is thermalized to 300 K.

In figure 1 we present results for the distance difference, dM(300 K), between the DVs of
the damaged Mo materials and the set of reference DVs obtained by using FaVAD. The MD
simulation performed with GAP presents two Mo atoms with the largest distance difference,
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Figure 1. Distance difference between the DVs for the damaged Mo sample and those for
the defect free and thermalized sample for the GAP in (a) and EAM in (b) potentials. We
apply FaVAD to a bombarded sample at a PKA energy of 500 eV on the 〈001〉 velocity
direction. We notice that GAP potentials modeled the formation of 2 crowdions, while
the EAM potentials model the presence of only one crowdion defect after the collision
cascade.

that allows us to set a threshold at 0.6 for further analyses. A Mo atom with distance difference
bigger than a value of 0.6 is quantified as a self-interstitial atom (SIA) for all the MD simula-
tions. We also identify Mo atoms in the vicinity of the SIA with a distance difference in the
range of 0.1 to 0.6. Although these atoms are not quantified as SIAs, they provide informa-
tion about the atomic arrangement of more complex point defects like a crowdion in this case,
where four atoms share three lattice sites. For the EAM case, two Mo atoms are also identified
as potential SIA by FaVAD. However, the atomic geometry of this point defects is associated
to a dumbbell defect where two atoms share a lattice site, observed in the figure 1(b) where
only a couple of Mo atoms have a distance difference in the range of 0.2 to 0.6. The GAP and
EAM MD simulations report the same number of SIA, but the atomic geometry of the modeled
defects is different. Besides that, the re-crystallization of the Mo sample is well modeled by
the GAP potentials, where the majority of the Mo atoms have an atomic local environment
similar to the the defect-free and thermalized Mo sample, which is noted in the upper panel of
the same figure.

3.1. Crystal defects formation as a function of the simulation time

The interatomic MD potentials need to be capable to model the formation of point defects at
different PKA energies assigned to the projectile. More complex defects can be found for high
PKA energy values. For this reason, we increase the features of FaVAD to compute the DVs
of all the atoms of the sample at different time steps of MD simulations. Point defects can be
identified by comparing their DVs to those of the defect-free sample thermalized to 300 K. In
order to show this new feature, we perform MD simulations at PKA energies of 10 keV and

6
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Figure 2. (a) Number of displaced atoms as a function of the simulation time for 1 and
10 keV PKA’s in the 〈001〉 velocity direction, by using the GAP and EAM potentials.
At 10 keV, three phases are identified during collision dynamics associated with the
shockwave velocity where the destructive phase shows particles traveling at supersonic
velocities. Then the re-crystallization of the Mo sample occurs during the thermalization
phase. (b) The average of the KE of displaced Mo atoms. We notice a similitude between
the two MD potentials.

1 keV on the 〈001〉 velocity direction. The information of the damage of the material is obtained
as an output data from the MD simulation at a time step of Δtd = 0.1 ps for 1–3 ps, where
the collision cascade mechanisms mainly happen [30]; a Δtd = 0.5 ps for 3–6 ps; and a final
Δtd = 1.0 ps for relaxing the damaged sample.

In figure 2(a), we present results for the quantification of point defects formed as a function
of the simulation time at 1 (empty symbols) and 10 (solid symbols) keV of PKA with the
GAP and EAM potentials. FaVAD is applied to identify and quantify the point defects with a
distance difference threshold of dM = 0.6 for all cases, for which value is observed that Mo
atoms have the highest probability to be considered as actual defects [11]. Although the profiles
presented by the MD simulations at 10 keV are similar, the maximum number of displaced
atoms is located at 0.8 and 1.1 ps for the GAP and EAM respectively. At the end of the MD
simulations, a total of 42 displaced atoms is reported for the GAP modeling and 35 Mo atoms
are identified as defects by utilizing the EAM potential. The ML based MD potential produces
a majority of crowdion defects rather than dumbbells, as will be discussed later. At a PKA of
1 keV, the dynamics presented by the displacement atoms is notable different at 1–7 ps where
the re-crystallization of the material sample is carried out. Being well modeled by the GAP
framework (figure 2(a)). However, both MD potentials report the same number of three stable
point defects at the end of the MD simulation.

In figure 2(a), three phases of a collision cascade are identified for cascades at a PKA energy
of 10 keV by computing the average velocity, 〈V(t)〉, of the total identified displaced atoms,

7
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ND, as a function of the simulation time as

〈V(t)〉 = 1
ND

ND∑
i=1

√
vi

x(t)2 + vi
y(t)2 + vi

z(t)2, (7)

where vx , vy, and vz are the instantaneous velocities of the ith displaced atom taken from the
output data of the MD simulations. By considering the longitudinal velocity of sound νMo in
Mo that varies from 5.4 to 6.25 km s−1 at a temperature of 300 K [31], we can define a super-
sonic collision cascade phase where 〈V(t)〉 > νMo. This stage is closely related to the ballistic
phase [6]. Thus, at the beginning of the MD simulation (0.1–0.4 ps) the average velocity of
the displaced atoms is 1.5 to 3 times bigger than νMo, which is a similar phase range reported
for iron samples [32] and Fe–Ni alloys [30]. In this supersonic phase, highly energetic atoms
start colliding and transferring KE to their nearest neighbor atoms. At this lapse of time, atoms
with supersonic velocities create stable point defects in the sample, then some of them can
be identified as Frenkel pairs, for example. More Mo atoms are displaced from their lattice
position and the starting KE of the projectile is distributed among the Mo atoms, followed by
loss of KE by the Mo atoms that were already displaced. This process leads the Mo sample to
the sonic phase in the time lapse of 0.4 to 1.1 ps. The sonic wave does not create stable point
defects, leading to a liquid phase inside the Mo sample which is well modeled by the GAP
potential due to the inclusion of liquid samples at different pressures in the training data [15].
For collisions at 10 keV, we noticed that the number of displaced atoms at the limit between
the supersonic and sonic phases is proportional to the total number of SIA at the end of the
simulation time, as expected and reported in the literature for damage in materials [30]. The
last phase of the collision simulation is called the thermalization phase and defined when the
average velocity of the displaced atoms is 〈V(t)〉 < νMo. In this phase the material sample is
re-crystallized and cools down to its initial room temperature.

In figure 2(b) we report results for the average KE of displaced Mo atom as a function of the
simulation time for PKA energy values of 1 and 10 keV with the GAP and EAM potentials. The
KE of the ith displaced Mo atom is calculated as Ei

K =
(
m/2

) [
vi

x(t)2 + vi
y(t)

2 + vi
z(t)

2
]

with m
as the Mo mass. Followed by the computation of the average KE of all the displaced Mo atoms
as 〈E〉 =

(
1/ND

)∑ND
i Ei

K. We notice that at the beginning of the MD simulation the projectile
transfers its KE to its nearest neighbor atoms which starts the supersonic shock-wave. After
1.1 ps of simulation time, the average KE is almost constant, which represents the thermaliza-
tion process of the sample for all the MD simulations at both PKA energy values. However,
EAM and GAP model the expansion of the sonic wave and the energy landscape of defects
differently, which leads to the formation of different atomic geometries for the identified SIAs
and Mo atoms in their respective vicinity at the end of the MD simulation. The formation of
dumbbell SIA defects is more common in the EAM potential.

3.2. Classification and quantification of crystal defects as a function of the PKA energy

We perform MD simulations in a PKA energy range of 0.5 to 10 keV for several velocity
directions with the GAP and EAM potentials. The comparison of the modeling of the formation
of point defects after collision cascade modeled by these potentials provide an insight of the
advantages and limits of the GAP MD potentials over traditional ones (EAM potentials). In
figures 3 and 4 we present the average number of point defects, 〈PD(Ep)〉, and its standard

8



Modelling Simul. Mater. Sci. Eng. 29 (2021) 055001 F J Domínguez-Gutiérrez et al

Figure 3. Average number of point defects formed after collision cascade as a function
of the PKA energy. Total number of Frenkel pairs in (a), and crowdions and dumbbells in
(b). Data points are connected by lines for visual guidance. We compare results obtained
by GAP with those for the EAM MD potentials. A fitting curve is included to the total
number of Frenkel pairs as: aξb with ξ = EPKA/E0 where E0 = 1 keV, a = 2.88 and
b = 0.54 for the GAP (green solid line) and a∗ = 1.65 and b = 0.667 for the EAM
(dotted red line), with a correlation factor of 0.99 for both methods. The number of
Frenkel pair increases roughly with the square root of EPKA.

deviation, σ(Ep) as a function of the PKA, Ep, which are calculated as:

〈PD(Ep)〉 = 1
NT

NT∑
i=1

Ni(Ep|〈r1r2r3〉)

σ(Ep) =

√√√√ 1
NT − 1

NT∑
i=1

(
Ni (Ep|〈rxryrz〉 − 〈PD(Ep)〉

)2
, (8)

with Ni(Ep|〈r1r2r3〉) as the number of defects for a given velocity direction, 〈r1r2r3〉, and NT

as the total number of MD simulations performed. The defects are identified by FaVAD as a
function of the PKA energy.

Figure 3(a) shows the average number of Frenkel pairs as a function of the PKA energy,
modeled by the GAP and EAM potentials. This value is related to the average number of single
vacancies found in the damaged Mo sample. FaVAD has to identify the formation of a stable
SIA and a vacancy to quantify this kind of defect. Usually Mo atoms with a dM(T ) > 0.6 are
identified by FaVAD as SIA and quantified by using equation (8), and Mo atoms in their vicinity
indicate the formation of a crowdion or dumbbell defects. The average number of Frenkel pairs
can be fitted to a scaling law proposed by Stoller et al [33] that quantifies the number of point
defects formed in damaged samples as: aξb, where ξ = EPKA/E0 with E0 = 1 keV as a scaling
factor, and a and b are fitting parameters. In our case, a good approximation to the mean value
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Figure 4. Total number of defects calculated as: Frenkel pairs + 3 × crowdion + dumb-
bell + SIA vicinity are presented as a function of the PKA. A fitting curve is included
to the total number of defects as: aξb with ξ = EPKA/E0 and E0 = 1 keV; for GAP
a = 8.77 and b = 0.68, while for EAM a = 8.71 and b = 0.62. A correlation factor of
0.99 is associated to the fitting curve for both methods. In the inset, we show the iden-
tified SIA and Mo atoms in the local vicinity (cyan spheres), as well as vacancies (gray
spheres) at the final step of the MD simulation at 10 keV PKA with GAP, showing the
formation of crowdion defects. The initial position of the projectile and its [100] velocity
direction are shown by a red sphere and a red arrow, respectively.

of the GAP data is found by applying the damped least-square method implemented in Python
library SciPy with fitting parameters a = 2.88 and b = 0.54, where the associated correlation
factor is 0.99. We also fit the mean value of the EAM results with a = 101.65 and b = 0.667
and a correlation factor of 0.99.

In figure 3(b) we show results for the average number of dumbbells and crowdions as a
function of the PKA energy. Here, the number of crowdions are quantified by identifying four
Mo atoms sharing three lattice positions, while dumbbells are detected when two Mo atoms
share one lattice position by FaVAD [11], with a dM(T ) > 0.2. We notice that the formation
of crowdions is more favorable for collision cascades simulated by the GAP potential, while
dumbbells are formed for all the PKA energy values with the EAM potential. This is not a
surprise, since the EAM potential incorrectly predicts 〈110〉 dumbbells to be lower in energy
than 〈111〉 crowdions or dumbbells [9] (see table 2). The GAP describes the relative formation
energies of all SIA defects in a good agreement with DFT results [15], and correctly reproduces
the 〈11ξ〉 dumbbell as the most stable SIA [34]. The 〈11ξ〉 dumbbell is a tilted 〈111〉 SIA that
easily migrates along the 〈111〉 chain of atoms in a zigzag-like motion [34], fluctuating between
dumbbell and crowdion configurations, both of which FaVaD detects and identifies.

In table 3, we present the number of crystal defects as a function of the PKA energy for GAP
and EAM MD simulations, as a reference. Frenkel pairs (SIA + single vacancy) are counted
for Mo atoms with a maximum DV distance difference. Single vacancies are quantified and
identified by the KD-tree algorithm included in FaVAD. Identified crowdions and dumbbells
are also tabulated. The total number of defects is calculated as: Frenkel pairs+ 3× crowdion+
dumbbell + SIA vicinity and are shown in figure 4. There is a fair agreement between GAP
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Table 3. Average number of point defects and vacancies as a function of the PKA, which
are identified by our DV based method. SIA are identified as W atoms with the largest
dM(T ) to be in an interstitial site, reported into parentheses. SIA vicinity are affected Mo
atoms due to the presence of an SIA and thermal motion. Standard deviation values are
included in the data.

Defect 0.5 1 2 5 10

GAP potential

PKA (keV)
Frenkel pairs 2 ± 0.33 3 ± 0.45 4 ± 0.6 7 ± 1.05 10 ± 1.53
Crowdion 1 ± 0.15 2 ± 0.33 2 ± 0.33 3 ± 0.45 6 ± 0.9
Dumbbell 0 0 1 ± 0.15 2 ± 0.33 3 ± 0.45
SIA vicinity 0 0 2 ± 0.33 10 ± 1.53 11 ± 1.67

Total 5 ± 0.20 9 ± 0.54 13 ± 0.77 28 ± 1.94 42 ± 2.55

AT-EAM-FS potential
Frenkel pairs 1 ± 0.15 2 ± 0.33 3 ± 0.45 4 ± 0.6 8 ± 1.33
Crowdion 0 1 ± 0.15 2 ± 0.33 4 ± 0.6 5 ± 0.77
Dumbbell 1 ± 0.15 2 ± 0.33 2 ± 0.33 4 ± 0.6 6 ± 0.9
SIA vicinity 1 ± 0.15 1 ± 0.15 4 ± 0.6 5 ± 0.77 6 ± 0.9

Total 3 ± 0.26 8 ± 0.51 15 ± 0.88 25 ± 1.29 35 ± 2.03

and EAM MD results at PKA energies lower than 5 keV. A power-law regression curve aEb
PKA

(energy in keV) can be fitted to the total number of defects with a = 8.77 and b = 0.68 for
GAP and a = 8.71 and b = 0.62 for EAM, resulting in a correlation factor of 0.99 for both
MD potentials. The geometry of the identified point defects for the GAP MD simulations is
shown in the inset of figure 4, where SIAs and crowdions are represented by spheres in cyan
and vacancies are depicted as gray spheres.

3.3. Ion beam mixing

We also analyzed the ion beam mixing from the cascades in Mo, as a means to compare the
results with experiments. Ion beam mixing means the effect where the ion irradiation induces
ballistic and thermal spike displacements of atoms from their initial sites into other positions,
in effect mixing atom positions [5, 6]. The ion beam mixing in bulk material can be mea-
sured using marker layer experiments [35, 36]. The ion beam mixing coefficient obtained from
the experiments can be compared directly with atom relocation obtained from MD cascade
calculations via diffusion theory [37–39].

In the current case, we followed the approach introduced in reference [39] that allows com-
paring marker layer mixing experiments with simulations for a specific ion beam irradiation.
For mixing in Mo, there are experimental data available for several different marker layers
materials mixed by a 300 keV Kr ion beam [36]. To compare with these, we first determined
the atom relocation as the square of the total atom displacements R2

sim(Ep) =
∑

i[r
′
i − r0

i ]2 in
the MD cascade simulations for self-recoils between energies of 500 eV and 10 keV, where the
index i runs for all the Mo atom in the samples; and�r ′ and�r 0 are the positions of each atom in
the Mo sample at the final and first steps of the MD simulation, respectively. We verified that
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Figure 5. The average of atom displacement 〈R2
sim(Ep)〉 over all the projectile velocity

directions as a function of cascade energy, Ep. Also shown is a functional fit to the GAP

data points as R2(Ep) = a
E

3/2
p

E
1/2
sub +E

1/2
p

with a = 9.5 Å2 eV−1 is the fitting parameter, see

text for details.

the center of mass of the cell is not displaced at the end of the MD simulations. This enables
integrating the R2 data, we then fit the physically motivated [5, 39] functional form

R2(Ep) = a
E3/2

p

E1/2
sub + E1/2

p

, (9)

to the data. Here a is a fitting constant and Esub the subcascade threshold energy. In the current
case, we estimated from SRIM simulations [24] that Esub ≈ 10 keV for Mo. Using this value
the fit to the MD simulations gave gave a = 9.5 Å2 eV−1. In figure 5 we report the average
over all the projectile velocity directions of the MD results, 〈R2

sim(Ep)〉 as a function of the PKA
energy.

Our MD calculations are compared to experimental measurements of mixing efficiency Qexp

[36, 40]. The mixing for a 300 keV Kr beam, used in experiments of Kim et al [36], can then be
calculated by first obtaining the primary recoil spectrum n(E)dE from ion range calculations
with the MDRANGE code [41], followed by the computation of the total mixing efficiency
caused by the 300 keV Kr beam in Mo as [39]

Qsim =

∫ E0
0 R2(E)n(E)dE

6n0EDn

, (10)

where E0 is the initial implantation energy (300 keV in the current case), the atomic density
n0 = 3/a3

0 with a0 = 3.16 Å as the lattice constant of Mo, and EDn the deposited nuclear energy
of the Kr beam around the experimental marker layer depth (400 Å for the experiments in
reference [36]).
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Using this procedure, we obtained the value of Qsim = 14 ± 2 Å5 eV−1 which compares well
with the experimental values that are in the range of Qexp = 4–13 Å5 eV−1. Although there
is considerable uncertainty in both simulation and experiments, nevertheless this comparison
shows that the GAP potential for Mo describes atom relocation in cascades reasonably well
compared to experiments.

4. Concluding remarks

In this paper, we performed classical and machine learning molecular dynamics simulations
to emulate neutron bombardment on molybdenum samples in an impact energy range of
0.5–10 keV, and a sample temperature of 300 K. For this, we use a new ML interatomic
potential based on the GAP framework. The results are compared to those obtained by using
a traditional EAM potential. Formation of Frenkel pairs and more complex defects like crow-
dions and dumbbells are identified and quantified by using the recently developed software
workflow for fingerprinting and visualizing defects in damaged crystal structures (FaVAD).
Here, the local environment of each atom of the sample is represented by a DV. The differ-
ence between a pristine Mo sample and a damaged one is computed taking into account the
magnitude of the thermal motion also.

Supersonic, sonic, and thermalization phases are identified by analyzing the average KE
of the identified ‘defective’ Mo atoms. The information of the liquid phase included in the
fitting of the GAP potential leads to better modeling of the transition between supersonic
and sonic phases, where complex defects start to form. The formation of crowdions is more
favorable for the GAP potential. The number of Frenkel pairs formed by using the EAM and
GAP MD potentials for collision cascades simulations can be fitted to a ∼ξb scaling law, with
ξ = EPKA/E0 where EPKA is the PKA energy and E0 = 1 keV. Here b = 0.54 for the GAP and
b = 0.667 for the EAM. Finally, the damage in Mo sample is also analyzed by calculating the
ion beam mixing for the GAP results with a value of Qsim = 14 ± 2 Å5 eV−1 which is in good
agreement to experimental measurements of mixing efficiency for a Kr beam with a range of
Qexp = 4–13 Å5 eV−1. This demonstrates the improvement of the numerical modeling of atom
relocation in cascades by the GAP potential.

ML interatomic potentials have been developed for further transitional metals like V, Nb,
and Ta. With the expected improved accuracy of these ML-based MD potentials subsequent
refined investigations of damage processes in these materials are foreseen.

Acknowledgments

FJDG gratefully acknowledges funding from A von Humboldt Foundation and C F von
Siemens Foundation for research fellowship. Simulations were performed using the SeaWulf
cluster at the Stony Brook University. KN, FD and JB acknowledge that their part of this work
has been carried out within the framework of the EUROfusion Consortium and has received
funding from the Euratom Research and Training programme 2014–2018 under Grant Agree-
ment No. 633053. The views and opinions expressed herein do not necessarily reflect those of
the European Commission.

Data availability statement

All data that support the findings of this study are included within the article (and any
supplementary files).

13



Modelling Simul. Mater. Sci. Eng. 29 (2021) 055001 F J Domínguez-Gutiérrez et al

ORCID iDs

F J Domínguez-Gutiérrez https://orcid.org/0000-0002-1429-0083
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