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Abstract: Complex colloidal fluids, depending on constituent shapes and packing fractions, may
have a wide range of shear-thinning and/or shear-thickening behaviors. An interesting way to
transition between different types of such behavior is by infusing complex functional particles that
can be manufactured using modern techniques such as 3D printing. In this paper, we perform 2D
molecular dynamics simulations of such fluids with infused star-shaped functional particles, with a
variable leg length and number of legs, as they are infused in a non-interacting fluid. We vary the
packing fraction (φ) of the system, and for each different system, we apply shear at various strain
rates, turning the fluid into a shear-thickened fluid and then, in jammed state, rising the apparent
viscosity of the fluid and incipient stresses. We demonstrate the dependence of viscosity on the
functional particles’ packing fraction and we show the role of shape and design dependence of the
functional particles towards the transition to a shear-thickening fluid.

Keywords: molecular dynamics; functional particles; jamming; shear thickening; viscosity; diffusivity

1. Introduction

The apparent viscosity of a fluid is an important component of various applications,
such as the ones that include the control of mechanical vibrations or nanocoatings. In addi-
tion, the concept of a diverging viscosity with strain rate, has traditionally been under the
basic theories of glasses, as they emerge in granular and colloidal systems [1]. Nevertheless,
in practice, with common fluids and macroscopic components, using a variable viscosity
concept might not be possible or would be difficult to implement in several cases. For
this reason, magnetorheological (MR) [1,2] and electrorheological (ER) [3–8] fluids have
emerged, which have the ability to control the fluid viscosity with external magnetic and
electric fields, respectively. A continuous control of the viscosity would require additives,
when using a common fluid [9–11] but without applying external force fields. For that
reason, in this paper we focus on simulations of controlling the fluid viscosity [12–18]
through infusing complex-shape functional particles [19–22] (like ferrous particles infused
in MR or ER fluid) based on the concept of jamming [22–30] that takes place in randomly
packed ensembles and therefore controls the damping characteristics [31–33] of generic flu-
ids. The idea of a fluid viscosity increase lies in studies of jamming in particulate matter, in
which jamming could occur as the packing fraction of matter increases beyond the jamming
density, in frictional [28] or frictionless particles [34] interactions. However, in the presence
of friction, the jamming characteristics and the viscosity increase are controlled and tuned
by the friction coefficient. The geometric asperity (GA) model [22,29] demonstrates these
effects through a two-dimensional (2D) model that has bidisperse disks having asperities
centered at the disk edges, and the model considers asperity interactions that successfully
emulate the effects of friction in particulate matter. Moreover, the GA model showed that
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instead of emulating physical friction, asperities can be tuned in a way that allows the
control of fluid viscosity. In this paper, functional particles consist of disks that contain
ray-like asperities throughout their surface and asperity collisions with the colloidal fluid
are considered during stochastic rotation dynamics (SRD) runs. We find that the control of
viscosity through these additive functional particles is quite a natural effect, and a natural
extension of the results from the GA model [22].

There are several existing approaches to study the rheology of particle suspensions
in fluids. Among them, there are dissipative particle dynamics (DPD) [35,36], Brown-
ian dynamics [37], lattice Boltzmann method [38,39], Stokesian dynamics [40–42] and
SRD [18,43,44]. In order to take into account the temperature equilibration in an approxi-
mate but fast manner, in this paper, we utilize SRD, available in the simulation software
LAMMPS [45,46]. The focus of this work involves the calculation of the fluid viscosity as
the shape and packing fraction of the infused particulates are changing. Selecting particular
particle shapes can provide a fine-tuning of the mechanical responses [47]. The emergent
strength of packings made out of these functional particles depends on their shape, and
they are stiffest/softest for compact and rod-like shape, respectively. The star-like func-
tional particles in this work are formed through a custom algorithm that adds particulates
stochastically towards a macroscopic target geometry (Figure 1) and the shape we choose
is optimized so that it is stiffest at its center and softest at the outer sides. Strain stiffening
happens due to soft packing at the outer side near jamming and the algorithm may be
applied mutatis mutandis in three dimensions.

Soft rod-like shapes are often used in nanoparticles coating. Such coated nanoparticles
have many applications in biomedical sciences, such as drug delivery, molecular imaging,
biosensing, etc. Studies have been performed to understand the effect of coated surfaces
with various patterns for nanoparticles on their effectiveness in such applications. For
example, four different patterns, formed due to coatings using such line-shaped ligands
around nanoparticles, were studied in [48]. The main result was that the identification of an
optimal shaping among those four patterns required an anisotropic ligand pattern around
the nanoparticle, in a way that enables the easy translocation of the coated nanoparticles.
The dynamics of such penetration confirms the effect of surface patterning in such coated
nanoparticles. Moreover, Bogart et al. reported that mixtures of multiple ligands are
important for biocompatibility purposes [49], thus the possibility of jamming in such
fluids may be quite high. In addition to such surface design in nanoparticles, underlying
challenges exist, regarding the material characterization as well as the magnetism in
nanoparticles. Such a material characterization for cases with gold nanoparticles allowed
for a better membrane penetration [50]. Such nanoparticles could provide a basis for
colloidal fluids such as the ones investigated in the current work.

The main focus of this work is the demonstration of the shear-thickening behavior
of colloidal fluids with infused functional particles [25]. The leg length and number of
legs both determine the packing fraction in the fluid, and these can be varied by the
algorithm that is used for particle generation. Due to jamming, the system transforms from
liquid-like state to a shear-thickened, and then to a rigid, disordered, solid-like state. Other
shapes, spherical or circular [51,52], ellipsoidal [53–55], rods [56–58], polyhedra [59] and
U-shaped [25] particles have already been studied to investigate jamming effects. However,
the effects of more complex-shape particles, in relation to jamming, remain an interesting
open question.

In this paper, we aim to perform a proof-of-principle demonstration, so we utilize
two-dimensional molecular dynamics simulations using LAMMPS [45,46], performed by
infusing star-shaped particles with various numbers of legs and leg lengths into particles
that act as background fluids. Our principal focus is the qualitative demonstration of
the effects that may then be pursued in the laboratory. We perform an analysis of the
shear stress and viscosity with respect to strain rates, to find that the liquid-like state is
transforming into a solid-like state with a drastic increase of the apparent fluid viscosity.
From the behaviors of pressure vs. packing density and viscosity vs. strain rate, we identify
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approximate jamming packing fractions, where the transition from shear thickening to
jamming takes place. The higher the packing fraction, the higher the total strain and time
required to reach a steady state. Most importantly we show the existence of a jump of
viscosity after reaching the jamming transition, for distinct functional particle shapes, and
associated jamming effects. Finally, the structure of the system is analyzed and the main
results include the features of particle diffusion in a shear-thickening fluid, and the features
of the primary peaks in the microstructure’s pair correlation function. The rest of the
paper is organized as follows. In Section 2, the molecular model and simulation method
will be described in detail. In Section 3, we present detailed MD simulation results and a
discussion, followed by our summary in Section 4.

2. Materials and Methods

In this work, we used two-dimensional periodic simulations in LAMMPS with side
length of 30 in LJ units [60]. This unit is widely used in MD simulations for reporting
generalized results that can be interpreted into physical units for any specific materials [44].
We chose SRD particles that act as the background solvent for rigid colloidal star particles.
In our MD simulations, the density of SRD particles (solvent) was set at 85.0 in LJ units.
The density of star particles varied since the simulation cell can be filled with different size
star particles. The mass of each SRD atom was set at 1.0 and the mass of each star particle
atom was set at 100, which aimed to approach the limit of infinite relative mass ratio, with
functional particles having ideal collisions with SRD particles, and was consistent with
previous publications [61–64]. As an example of relative density of star particles, in our
simulations, for a simulation cell infused with a 3-legged star particle that has a leg length
of 3.0, the functional star-particle density was 106.67 in LJ units. We used a custom packing
algorithm to generate the functional star particles using small circular core particles each
having a radius r = 0.2. The overall packing algorithm contains two steps: in the first step,
we perform 1000 trials to place core particles randomly in a circular disk to create the core
of star-shaped particles with a radius R = 0.65 that rejects particles that are overlapping
or are too close. Then, legs are placed equidistantly around the R-circle with an angle (θ)
using the formula θ = 2π/Nleg, where Nleg is the number of star-legs (i.e., 3, 5 or 7). The
number of core particles in each leg (n) is an integer number determined by the formula
n = (Lg/(2r) + 1) where Lg is the desired leg length. The radial distances are measured
by rx = ((R + r) cos(iθ) and new particles are added at a distance rxa using the formula

rxa = (rx + j2r cos(iθ)) (1)

that gives the variable leg length (L = 0.0 to 6.0 for 3 legs, L = 0.0 to 3.0 for 5 legs, L = 0.0
to 2.5 for 7 legs) as showed in Figure 1a–c. In the second step, 30 star particles with the
same number of legs and each leg with the same length created by this exact same way
are randomly dispersed in the square-shaped simulation box, allowing the overlap of star
particles as in Figure 1d–f. The packing fraction (φ) for each different system is calculated
by the area covered by the total number of small circular particles over the area of the
square where the particles are dispersed, by the formula φ = (N · π · r2 · /L2) where N is
the total number of small particles and L is the side length of the simulation box [25].

SRD particles are coarse-grained background solvent constituents consisting of ideal,
point particles. The detailed SRD formalism is described by Hecht et al. [63]. The essential
idea behind using SRD particles as a cheap coarse-grained solvent is that SRD particles do
not interact with each other, but only with the solute particles, i.e., the different shaped
colloidal particles in this study. The fluid-like property (such as an effective viscosity) is
generated by the collision and rotation properties of these point SRD particles, through
particle streaming and particle velocity updates. Thus, simulations with large solute
particles can be run more quickly and the solute properties such as viscosity and diffusivity
in a background fluid can be measured.In our study, and in the limit of infinite relative
mass ratio, the SRD approximation becomes quite accurate. In LAMMPS, the algorithm
of SRD includes two steps: (1) the streaming step, in which it advects SRD particles,
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performs collisions between the SRD particles and the large solute particles, and thus
imparts forces and torques to the large solute particles, which also change the positions
and momentums of the SRD particles; (2) the velocity update step, in which it periodically
resets the velocity distribution of the SRD particles via random rotations. The fundamental
relation between the mass of SRD particles (mSRD), temperature (T), characteristic time step
(∆t) and mean free path (λ) between collisions are related through the following relation
λ = ∆t

√
kB · T/mSRD . During the streaming step the ith particles position at time n + 1

is calculated using an Euler scheme, rn+1
i = rn

i + vn
i · ∆t , where ∆t is the SRD time step

that equals to the simulation time step multiplied by the number of time steps after which
the SRD particle velocities reset. The particle velocity is updated using a rotation matrix
R[ξ(rn+1

i )] with [63],

vn+1
i = vn

i + R[ξ(rn+1
i )](vn

i − u[ξ(rn+1
i )]) (2)

where u(ξ, t) = ∑kεξ vk/Nξ,t is the average velocity of bin ξ, and Nξ,t is the total number
of SRD particles at time t [64]. In this study, the tangential component of the SRD particle
momentum is preserved. Furthermore, we prevent the overlapping of star particles by
setting the “overlap” tag to no.

For the simulations, we use a soft potential for star–star as well as star–SRD particles
interaction. It is a repulsive potential that repels overlapping atoms and also becomes valid
as r goes to 0. The potential is defined as,

Dit =

{
A[1 + Cos(π · r/rc)] when r < rc

0 when r > rc
(3)

where A is a typical pre-factor and rc is the cut-off (σ). In the simulations, we used the
prefactor to ramp up from 0 to 100 towards configuration equilibration, and kept the
global cutoff equal to 1.12 σ and the local cutoff equal to 1.0 σ. After the completion of the
equilibration run, the prefactor remains at its final value during shear loading.

The key aspect of this work is the investigation of the shear-induced effects on fluid
viscosity. The system is sheared for different strain rates starting from 0.001 to 0.009 in
steps of 0.001 and 0.01 to 0.09 in steps of 0.01. Figure 1g–l show the system before and after
shear, displaying the noticeable change in box dimensions. The negative pressure tensor in
the diagonal gives the normal stresses. Shear stress is then calculated as follows [65]:

τs
ij = σij − 1/2δij ∑

i,j
σij (4)

where δij is the unit tensor being 1 if i = j and 0 if i 6= j. The viscosity is related to the shear
stress and shear strain at point p and time t as follows [66]:

τs(p, t) = ηsγ̇(p, t) (5)

where the total pressure is P = (Pxx + Pyy)/2 and the fluid viscosity is then calculated
from the slope of the shear stress vs. strain rate plot as the strain rate approaches zero.

For the diffusion coefficients, we calculate the mean square displacement (MSD) of
a group of atoms. For calculating the diffusion coefficients of molecules (star particles
composed of several number of relatively fixed position atoms) we calculate the center of
mass for each molecule and then consider that the center of atoms has a MSD [67]

MSD = (r− r0)2 = 1/N
N

∑
n=1

(rn(t)− rn(0))2 (6)

where N is the number of total atoms, rn(0) = r0 and rn(t) is the initial position and the
position after time t of atoms, respectively. The radial distribution function, g(r), shows the
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structure of the suspended star particles with different shapes. The g(r) is calculated for
different initial conditions of same leg length and number of legs.

Figure 1. Functional particle configuration construction, for single (a) three, (b) five and (c) seven
legs in a single star particle with core radius of 0.65 σ and leg length of 2.5 σ. Randomly dispersed
configurations of 30 star particles in each system for (d) three, (e) five and (f) seven legs on each
functional particle. Snapshot of MD simulation movies, before the pure shear applied on the system
of star particles, with (g) three, (h) five and (i) seven legs infused in square-shaped (30 σ × 30 σ)
periodic boxes filled with solvent SRD molecules and after the pure shear applied on the same system
of star particles with (j) three, (k) five and (l) seven legs.
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3. Results
3.1. Shear Thickening Due to Functional Particle Infusion

A key effect of the presence of the functional particles in the fluids is in the response to
applied shear strain rates. At small strains, the overall stress is close to zero and represents
a zero-shear viscosity state. However, an increase in the strain rate can nonlinearly increase
the stress leading to sufficiently high values. Figure 2a–c indeed shows that, the slope
of the stress vs. strain plot is zero near a very low strain rate (0.001). However, the
gradual increase in the strain rates up to a strain rate of 0.09 shows that the slope reaches a
comparatively larger value than the slope at lower strain rates. This shows that, the shear
stress increases more compared to an increase in strain rate. In addition, we observe that the
leg lengths are also important in this viscosity increment. For a system with three-legged
star-particles, if the leg length is small (0.0–1.5) the statement of having zero shear stress at
nominal stress is true. However, for the same strain rate, if the leg lengths are larger (6.0),
we see an observable shear stress even at zero strain rate. This is even more noticeable if
we consider the five-legged and seven-legged star particles with large leg lengths.

A standard way of investigating the flow stress of such complex fluids is through
the fitting of the stress–strain-rate relationship. Because of a nonlinear increase in shear
stress caused by infusing star-shaped particles in fluid-like SRD, we can determine the
gradual rise of yield stresses in our system by using a non-Newtonian fluid model [19,68]
of the form:

σ = Aγ̇α + σy (7)

where A is the slope, α is the exponent and σy is the yield stress. Figure 2d–f shows the
yield stresses for three-legged, five-legged and seven-legged star particles with different
leg lengths that vary the overall packing fractions. When α is less than 1, a shear-thinning
behavior is observed, while for α > 1 a shear thickening is expected.

In the model we studied, the fluid is Newtonian for small packing fractions, but
develops a yield stress as the packing fraction increases, similar to several previous
works [65,69–72], as seen in Figure 2a–c. One can see the rise of solid-like properties
in those fluidic systems. At the same time, these plots show the increase towards a shear-
thickening fluid for large packing fractions and large number of legs. The same conclusion
can be made from Figure 2d–f where a log–log plot of normalized shear stresses are plotted
against strain rates. The slope of the plot indicates how much net stress above yield stress
there is for different systems that contain different packing densities of infused star particles
with respect to different strain rates. We find from these that the normalized shear stress is
positive for a system with higher packing density even at a lower strain rate and the stress
sees further increment for an increment of strain rate.

To demonstrate the fluid-like to solid-like transition in a jammed state, we also deter-
mined how the viscosity varied with strain rate for various packing fractions and numbers
of legs. Figure 3a–c shows that, with an increase of strain rate the viscosity also increases,
which agrees with our previous result from Figure 2a–c, where we demonstrate that shear
stresses increase with strain rates. The increase of viscosity raises the solid-like properties in
our simulated system. This increase of viscosity makes our fluid of interest a characteristic
shear-thickening fluid. The shear-thickening behavior is similar for all the three-legged,
five-legged and seven-legged star particle system as expected. However, the magnitude
of the viscosity is observed to be different in different systems where particle shapes are
different. Characteristically, the fluid becomes deeply shear thickening as the number
and/or the length of the legs increase.
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Figure 2. Fitting plots of shear stress (ε/σ3) vs. strain rate (1/τ) for: (a) 3-legged star particles with packing fraction, φ, of
0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.54, 0.59, 0.69, 0.74, 0.79, 0.84 and 0.94; (b) 5-legged star particles with packing fraction, φ, of
0.22, 0.30, 0.40, 0.42, 0.45, 0.47, 0.54, 0.62, 0.72 and 0.80; (c) 7-legged star particles with packing fraction, φ, of 0.25, 0.37, 0.50,
0.59, 0.60, 0.70, 0.72, 0.74, 0.84 and 0.96. The log–log plot of shear stresses normalized by removing the respective yield
stresses with respect to the strain rates for (d) 3-legged, (e) 5-legged and (f) 7-legged star particles.
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Figure 3. Viscosity (ετ/σ3) vs. strain rate (1/τ) with leg length L (σ) of: (a) 0.0 σ, 0.5 σ, 1.0 σ, 1.5 σ, 2.0 σ and 2.5 σ for
3-legged star particles; (b) 0.0 σ, 0.5 σ, 1.0 σ, 1.2 σ, 1.3 σ and 1.5 σ for 5-legged star particles; (c) 0.0 σ, 0.5 σ, 1.0 σ, 1.3 σ and
1.5 σ for 7-legged star particles.

3.2. Pressure, Viscosity, Diffusivity and the Onset of Jamming

A way to investigate the jamming onset in the fluid arises through the tracking of
the steady-state average of the total pressure as a function of the packing fraction. At a
strain rate close to zero the total pressure represents the pressure along the yield stress
curve [25]. In principle, we expect to see P vanish near the jamming packing density and
then rise to a finite value above jamming. In Figure 4a–c we find that the pressure begins
to converge and then diverges to finite values for packing fraction (φ) between 0.5 and
0.6 for systems infused with three-, five- and seven-legged star particles. As it is well
known [22,29], it is actually difficult to locate the exact jamming packing density value
from tracking features in the curve as a simulation system size scaling is mandatory, and
a critical scaling analysis is necessary to determine the jamming transition [17,73,74]. By
using characteristic power-law fitting forms P = B(φ− φc)β when φ > φc and P = 0 when
φ ≤ φc, where B is the slope, we estimate β as the power and we identify the jamming
packing fraction φc to demonstrate the non-monotonic evolution with respect to the strain
rate. The power is always greater than 1 for all configurations, indicating a shear-thickening
behavior. The jamming packing fraction increases with respect to the increase in strain rate
for five-legged and seven-legged suspensions. Finally, another way to look at quasi-static
behavior and determine the jamming packing fraction is to investigate the pressure vs.
strain rate behavior, for a fixed packing fraction. For φ < φc, we get the P/γ̇ value to a
finite value as γ̇ reaches zero and for φ > φc we find that P/γ̇ diverges as γ̇ reaches zero.
In this case, we find a lower bound for φc = 0.54 for three-legged (Figure 4a), φc = 0.54 for
five-legged particles (Figure 4b) and φc = 0.6 for seven-legged ones (Figure 4c).
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Figure 4. Total Pressure and Packing Fraction. (a) Total pressure (ε/σ3) vs. packing fraction (φ) for strain rates equal to
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08 and 0.09 for 3-legged star
particles, and with φ equal 0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.54, 0.59, 0.69, 0.74, 0.79, 0.84 and 0.94. (b) ε/σ3 vs. φ for same
strain-rates as (a), for 5-legged star particles with φ equals 0.22, 0.30, 0.40, 0.42, 0.45, 0.47, 0.54, 0.62, 0.72 and 0.80. (c) ε/σ3

vs. φ for same strain-rates as (a), for 7-legged star particles with φ equals 0.25, 0.37, 0.50, 0.59, 0.60, 0.84 and 0.96. (d–f) The
total pressure is shown as function of φ− φc in log-scale, in correspondence to (a–c).

For each particular system we applied uniform strain rates starting from 0.001/s
to 0.09/s. In Figure 5, the overall total pressure is shown with respect to the applied
strain-rate for the 3 topologically distinct fluids (functional particles with 3, 5 or 7 legs
(cf. Figure 5a–c respectively)). As expected, the total pressure scales linearly with the
strain-rate for all cases, due to the repulsion of the functional particles, as they move at
higher rates. Figure 6a–c and Figure 6d–f one can see the average pressure and average
shear stress, respectively, as a function of net shear strain for several different packing
fraction (φ = 0.18, 0.23, 0.28, 0.34, 0.44, 0.49, 0.59, 0.69, 0.84 and 0.94 for 3-legged; φ = 0.22,
0.30, 0.40, 0.47, 0.62, 0.72 and 0.80 for 5-legged; and φ = 0.25, 0.37, 0.50, 0.60, 0.84 and 0.96
for 7-legged star particles) for a uniform strain rate of 0.001/s. Each pressure and shear
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stress point in the plot represents the local average of pressure and shear stress over a
strain window of ∆t = 1000. These plots have error bars as standard errors of mean over
30 different initial configurations for each packing density. From these plots we can clearly
see that after a certain total strain value all the systems reach a steady state as we expected
earlier. However, for a higher packing fraction, both the relaxation time and total strain
values are much higher than at a lower packing fraction, for each type of star particles,
indicating the glassiness features expected for such frustrated fluids. Furthermore, it is
clear that for high packing fractions, apart from the increase of stress, the stress becomes
non-monotonic, a direct evidence of plastic yielding from a jammed state, formed by the
packed functional particles and the fluid.

Figure 5. Pressure to strain rate (ετ/σ3) vs. strain rate (1/τ) plot for system infused with (a) 3-legged,
(b) 5-legged and (c) 7-legged star particles.

Further, the average viscosity was investigated for each leg length with 30 different
initial condition from the average of slope for the first six and eight points of shear stress
vs. strain rate plots. This average result eliminates the initial condition dependence as
well as any specific factor that may lead to the jamming state. The viscosity is nearly zero
until the packing fraction reaches 0.5, for systems with five-legged and seven-legged star
particles, whereas it is 0.6 for system with three-legged star-particles. The similar jump
behavior can be explained in terms of the leg length of these particles. When the leg length
of five-legged and seven-legged particles reaches 1.5 and that of the three-legged particles
reaches 2.5, the viscosity rises significantly due to jamming. The jamming reaches a critical
value with a higher packing fraction as well as leg length because of a less compact shape
of the three-legged particles compared to the five-legged and seven-legged particles. This
sharp increase of viscosity is the key indicator that the transition from liquid-like state to
solid-like state is caused by the jamming of star particles.
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Figure 6. Average total pressure (ε/σ3) and shear stress (ε/σ3) vs. strain for constant strain rate
(1/τ) of 0.001 for: (a,d) 3-legged star particles with packing fraction φ of 0.18, 0.23, 0.28, 0.34, 0.44,
0.49, 0.54, 0.59, 0.69, 0.74, 0.84 and 0.94; (b,e) 5-legged star particles with packing fraction φ of 0.22,
0.30, 0.40, 0.47, 0.62, 0.72 and 0.80; (c,f) 7-legged star particles with packing fraction φ of 0.25, 0.37,
0.50, 0.60, 0.84 and 0.96, with standard error of the mean error bars. Each point of the plots represents
the (a–c) average of pressure and (d–f) average of shear stress over a strain window ∆t = 1000. The
non-monotonic behavior seen at very high packing fractions is a direct evidence of yielding behavior
from the jammed state of the hybrid fluid/functional particles system.

It is worth noting that the star particle shape has a direct effect on diffusivity. Diffu-
sivity is calculated from the slope of the mean square displacements for small SRD atoms
and big star particles’ center of mass as described in the methodology section. Figure 7a–c
shows that star particles with longer legs have a high packing fraction and more inability
to disperse freely without colliding and jamming with other star particles. The lower
the arm length, the less restrictions for free movement, which results in higher diffusion
of the functional star particles. The change in suspension structure for different shaped
star particles and packing fractions can be visualized by plotting the radial distributive
function g(r). The center of mass for star particles is considered and plotted for three-, five-
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and seven-legged star particles in Figure 7d–f. For three-legged star particles, the greater
number of distinct peaks indicates a highly ordered structure, but it reduces into larger
primary peaks as the arm length increases and the system gets more jammed. Similarly, for
five-legged (Figure 7e) and seven-legged (Figure 7f) the primary peaks become larger and
local ordering emerges as the arm length increases.

Figure 7. Diffusivity D (σ2/τ) of small SRD fluid and big star particles vs. leg length L (σ) of
(a) 3-legged, (b) 5-legged and (c) 7-legged star particles system; radial distribution function g(r) of
big star particles center of mass for radial increment of 0.2 σ and maximum radial distance 10 σ

in: (d) average of all 30 configurations for 3 legs with maximum leg length L = 1.5 σ, L = 5.0 σ and
L = 6.0 σ; (e) average of all 30 configurations for 5 legs with maximum leg length L = 1.0 σ, L = 2.5
σ and L = 3.0 σ; (f) average of all 30 configurations for 7 legs with maximum leg length L = 1.0 σ,
L = 2.0 σ and L = 2.5 σ.

Based on the results of this computational study, we can infer that these functional
star-shaped particles have potential applications in ongoing rheology studies. Therefore,
experimentally studying the effect of functional star-shaped particles on fluid viscosity
would first require the feasibility and demonstration of expected effects and second, the
creation of functional star particles using a form of particulate matter. On the former, as
shown in Figure 8a,b, fluid viscosity may dramatically increase by increase the packing
fraction φ beyond the jamming packing fraction φc (see Figure 8b), which can be achieved
in a functional manner by increasing the leg length for any number of particles (see for
example, Figure 8a). On the latter, while nanoscale investigations are certainly of great
interest, their applicability extends to any scale; thus, we have created five-legged star
particles by applying a laser cutting technique on Plexiglas sheets, to demonstrate a physical
star-shaped particle, since the rest of the experimental study is beyond the scope of our
current computational study at the macroscale. Figure 9 shows two of the five-legged star
particles created by laser cutting at centimeter-dimensions. The core radius of each of the
star particles is 0.65 cm and the leg length of the smaller and larger star particles are 1.5 cm
and 3.0 cm, respectively.
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Figure 8. Viscosity (ετ/σ3) of the SRD fluids with respect to the (a) leg length L (σ) and (b) packing
fraction φ of infused star particles. The number of star particles N = 30 and number of legs Nleg = 3,
5 and 7 for star particles is indicated with red, green and blue color, respectively. It is worth noting
that the viscosity can increase by multiple orders of magnitude, turning water-like fluids into gel-like
texture by altering the functional particle shapes. Furthermore, for a given functional particle shape,
the viscosity displays a divergence that clearly violates typical colloidal suspension rules, such as the
Einstein formula for effective viscosity of a solvent with solutes µe f f = µ0(1 + Bφ), where µ0 is the
solvent viscosity, φ the solute packing fraction and B a finite geometrical factor [75].

Figure 9. Five-legged star particles with core radius of 0.65 cm and leg lengths of (a) 1.5 cm and (b)
3.0 cm, created by laser cutting on Plexiglas.

4. Discussion

Colloidal suspensions have a long history. Standard equations exist, such as the
Einstein equation for effective viscosity of a solvent with solutes µe f f = µ0(1 + Bφ), where
µ0 is the solvent viscosity, φ the solute packing fraction and B a finite geometrical factor.
However, the viscosity alteration due to such solute additives is limited. However, a novel
pathway exists by engineering design of functional particles that contain an intrinsically
collective mechanism for shear thickening and jamming [22]. Through such a design,
in this work, we investigated infused star particles in two dimensional simulations, as
proof-of-principle, for the shear-thickening and jamming effects demonstration. Indeed,
functional star particles caused shear thickening and jamming in simulated SRD fluids.
Shear thickening could be easily identified by having a nonlinear stress–strain-rate response
at low packing fractions. Moreover, we identified the key features related to jamming,
to draw conclusions related to the shear stresses, pressure, viscosity and diffusivity of
our system, which vary with applied strain rates as well as the packing fraction of the
infused functional star particles. It is worth noting that the viscosity can increase by
multiple orders of magnitude, turning water-like fluids into gel-like texture by altering
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the functional particle shapes [75]. Furthermore, for a given functional particle shape,
the viscosity displays a divergence that clearly violates typical colloidal suspension rules,
such as the Einstein formula for effective viscosity. The observation of shear stress is also
very important to identify the shifting of our fluid-like system towards shear-thickening
behavior. Our results of stress with respect to strain rate clearly shows the increase of
shear stress with respect to strain rate that leads to an increase of the yield stress of the
incipient amorphous functional star particle structure. By observing the non-monotonicity
of the stress as function of the strain, we inferred the presence of an amorphous glass/gel
structure at high packing fractions, as expected from prior works [29]. The pressure and
jamming analysis clearly indicated a jammed state caused by the infused star particles
at a critical packing density, identified through pressure and viscosity divergences. The
solid-like property showed an increase after this jammed state was achieved in different
types of systems, i.e., three-legged, five-legged and seven-legged star particle systems. The
key finding of our work is the rise of the viscosity with respect to the packing fraction
of infused star-shaped functional particles. The viscosity showed a rise after the packing
fraction reached 0.5 for five-legged and seven-legged star particles, and 0.6 for three-legged
star particles. This showed the shape dependency towards a rise of the viscosity due to
the jamming transition. The three-legged star particles are a comparatively less complex
structure than the five-legged and seven-legged star particles. Therefore, the viscosity
rose at a lower packing fraction for a comparatively complex shaped particles. Finally, the
diffusivity of particles showed that the diffusion was consistent with shear-thickening fluid
characters. The particle size was analyzed in this study, and we found that small fluidic
particles were more diffusive compared to big star particles at any packing density. The
probability of finding the star particles increased with a reduction of the diffusivity.

5. Conclusions

In this study, we demonstrated, by using MD simulations, how shear thickening
takes place in systems of fluid-like SRD particles with infused star-shaped functional
particles and variable leg numbers as well as leg lengths. We studied the limit of very
massive functional particles (relative mass ratio of 100) and only in two dimensions, so
that we could demonstrate a proof-of-principle calculation of the overall behavior in such
fluids. For various strain rates, we found that functional star particles may cause a smooth
Newtonian fluid to transform into a shear-thickened colloidal fluid and then to a jammed
amorphous solid that yields analogously to a gel [75]. Shear thickening was identified
by the nonlinearity in the stress vs. strain-rate response, seen at low packing fractions
in a clear manner. Jamming took place after the packing fraction where pressure and
effective viscosity displayed a divergence, and this was the critical packing fraction that
ranged from 0.5 to 0.6 for different shaped star particles. We observed that the system
reached an equilibrium after straining at a constant strain rate for a sufficiently long time,
by studying the pressure of the system at constant strain rate. The larger the packing
density or leg lengths, the more time was required. The diffusivity of big star particles as
well as small fluid-like SRD particles also showed analogous effects. Jamming caused a
reduction in diffusivity which was ordered in less compact, shaped three-legged particles
and disordered in more compact, shaped five-legged and seven-legged particles. The
dependence of the viscosity on the packing fraction shows that there is a very strong
divergence that goes beyond typical colloidal suspension rules [75], and also provides a
novel pathway for manufacturing functionally viscous fluids. Future work shall focus on
experimental realization of such functional fluids for nanocoating applications.
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