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Characterization of dislocation ensembles: 
measures and complexity
Thomas Hochrainer1, Lasse Laurson2, Stefanos Papanikolaou3*, Giacomo Po4 and Ryan B. Sills5 

When dislocations were first proposed at the beginning of the twentieth century to 
explain basic facts in metallurgy (Orowan 1934; Taylor 1934), the primary hypothesis 
was that they behave similarly to point particles, forming a liquid at larger scales in anal-
ogy to other excitations identified in physics (Anderson 1972). However, as characteri-
zation techniques improved, it became clear that dislocations do not obey the physics 
of point-like particles, but rather behave like the twigs of a bird’s nest (Cottrell 1953). 
They bend and exhibit long-range interactions leading to complex topologies as their 
density increases with increasing deformation. While dislocation density has long been 
used as an internal variable governing important aspects of mechanical behavior, it has 
been recently understood that the complete characterization of dislocations in a mate-
rial requires more specific tools and measures. Developing and exploiting such meas-
ures can be instrumental towards fostering further advances in metallurgy and mate-
rials science, especially in regimes where materials are required to withstand extreme 
conditions.

Among other crystal defects, the dominant role of dislocations emerges in crystals 
under mechanical loads. Their loop topology and capacity for multiplication lead to 
immense defect configurational complexity, typically manifesting in patterning at finite 
strains, and control key mechanical properties such as yield strength, work hardening, 
ductile fracture toughness, high-stress creep rate, and resistance to fatigue crack initia-
tion. The characterization of the dislocation ensembles’ complexity has long been under 
development, with a common tool being Nye’s dislocation density tensor (Nye 1953) and 
its spatial correlations. However, upon zooming into a dislocation network it becomes 
clear that there is additional complexity which goes beyond the average behavior and 
global correlations embedded in these classical density metrics. Such multiscale com-
plexity manifests itself through features ranging from the scale of individual dislocations, 
which may develop complex and jerky line shapes, over the local topology of the disloca-
tion network configuration, to the overall evolution of the network’s emerging patterns 
with increasing deformation.

The advances presented in this Special collection explore all aspects of the emerging 
features in dislocation complexity. As far as single dislocations are concerned, Bertin and 
colleagues achieved a practical advance where dislocations and their slip trajectories can 
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be dynamically visualized in simulations as atomic positions change with time. Péterffy 
and colleagues demonstrated that single dislocations in the important material class of 
solid solutions, which includes steels and high entropy alloys, display irregular and jerky 
line shapes from the nanoscale up to a quite large spatial correlation length (> 100 nm) 
that actually diverges when stress pushes dislocations towards yield. As dislocations 
form complex networks, interactions within the network lead to correlations, as well 
as dislocation junctions that locally re-structure the network topology. On the former 
aspect, Hochrainer and colleagues present how dislocation correlations require notions 
and show characteristics which are unprecedented in systems of point particles, while 
Anderson and El-Azab developed a new way of coarse-graining dislocation networks to 
account more efficiently for mutual dislocation interactions. On the latter, Akhondza-
deh and colleagues demonstrated how topological changes in binary junctions drive sig-
nificant dislocation multiplication on inactive slip systems, while producing a network 
topology that is more complex than previous theories suggest. At higher length scales, 
dislocation networks often exhibit a patterned, cellular morphology which is known to 
strongly influence mechanical properties (Xia and El-Azab 2015; Zaiser 2006). On this 
aspect, Wu and Zaiser achieved a further step in the path of coarse-graining and mod-
eling the formation and evolution of dislocation cells. Finally, it is clear that the complex-
ity and variety of dislocation networks requires machine-based tools for classification 
and understanding of the vast range of possible mechanical responses. On this feature, 
Salmenjoki and colleagues demonstrated that the complexity encoded in dislocation 
networks can be captured through machine learning in the case of a transition that takes 
place in materials with increasing amounts of precipitates.

Beyond steel and other traditional metals, these works represent a contribution within 
a wider effort to advance materials by design and to identify novel material classes 
and chemical compositions that display improved properties and manufacturability. A 
systematic path to these advances requires proper classification measures as a funda-
mental prerequisite for the design of microstructures that achieve superior mechanical 
responses. The results presented in this Special collection will certainly contribute posi-
tively in this direction.

All papers went through a regular reviewing process and were properly revised, when-
ever necessary, prior to acceptance.
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