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A. Esfandiarpour ,1 S. Papanikolaou ,1 and M. Alava1,2

1NOMATEN Centre of Excellence, National Centre for Nuclear Research, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
2Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland

(Received 5 October 2021; accepted 2 May 2022; published 24 May 2022)

High-entropy alloys (HEA) form solid solutions with large chemical disorder and excellent mechanical
properties. We investigate the origin of HEA strengthening in face-centered-cubic (fcc) single-phase HEAs
through molecular dynamics simulations of dislocations, in particular, the equiatomic CrCoNi, CrMnCoNi,
CrFeCoNi, CrMnFeCoNi, FeNi, and, also, Fe0.4Mn0.27Ni0.26Co0.05Cr0.02, Fe0.7Ni0.11Cr0.19. The dislocation cor-
relation length ξ , roughness amplitude Ra, and stacking fault widths WSF are tracked as a function of stress.
All alloys are characterized by a well defined depinning stress (σc) and we find a regime where exceptional
strength is observed, and a fortuitous combination takes place, of small stacking fault widths and large dislocation
roughness Ra. Thus the depinning of two partials seems analogous to unconventional domain wall depinning
in disordered magnetic thin films. This regime is identified in specific compositions commonly associated
with exceptional mechanical properties (CrCoNi, CrMnCoNi, CrFeCoNi, and CrMnFeCoNi). Yield stress from
analytical solute-strengthening models underestimates largely the results in these cases. A possible strategy for
increasing strength in multicomponent single-phase alloys is the combined design of stacking fault width and
element-based chemical disorder. A hardening factor represents this strategy where combination of low stacking
fault and high misfit parameters (and thus high roughness of dislocation at depinning stress) leads to stronger fcc
multicomponent alloys.

DOI: 10.1103/PhysRevResearch.4.L022043

Solid solution strengthening is one of the key strategies
to increase the yield stress of crystalline alloys by introduc-
ing solutes that pin dislocations through disturbances in the
perfect lattice. In an extreme limit of this process, high en-
tropy alloys (HEAs) are composed of four or more nearly
equimolar alloying elements and they display single-phase
behavior with outstanding mechanical properties [1–4]. De-
spite athermal transformation processes such as twining [3],
crystal plasticity in HEAs is as common as in any crystal [5],
mainly driven by dislocation dynamics, but with two key addi-
tional variables: chemical-induced-disorder lattice misfit and
stacking fault width fluctuations. Common analytical models
for solid solution strengthening in HEAs have been focused
on quantifying the misfit contributions. For traditional alloys,
strengthening was modeled by Fleischer [6] and Labusch [7].
They utilized the interaction between solute atoms and the
pressure field of a dislocation as the core to their models. In
these models, interactions related to the atomic size and shear
modulus misfits play an important role in that the larger the
difference between solute and solvent atom sizes, the stronger
the pinning of dislocations. Beyond traditional solid solution
alloys (SSA), in HEAs, a mean-field atomistic potential by
Varvenne et al. [1,8] was used to identify an effective medium
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alloy as a reference for HEA with the same average mechan-
ical properties. In this way, Varvenne et al. calculated the
interaction energy between solutes and dislocations and pro-
vided a scaling relationship between strengthening and misfit
parameters. Although some studies addressed the relation be-
tween stacking fault energy and mechanical properties [9–11],
the complexity of stacking fault fluctuations has been left
unexplored. In a recent study [12], Zaiser et al. addressed
the metastability and flow stress of partial dislocations based
on the distance between two partial dislocations. In order to
investigate the possible effects of stacking fault fluctuations,
we study the mechanical properties of edge dislocations and
their mobility under externally applied stress for seven fcc
SSAs. We find that, for the top four stronger alloys, mechani-
cal strength is controlled by a fortuitous combination of small
stacking fault widths and chemical-disorder-induced large dis-
location roughness, causing dislocation partials’ overhangs,
possibly analogous to unconventional depinning behaviors in
disordered magnetic thin films.

Traditional elastic depinning theory [13,14] has been
long thought to be the core basis of the description of
the behavior of single dislocations in general disordered
environments [14–16], and more specifically in solid solu-
tions [17,18], where chemical disorder proliferates. The key
prediction of such elastic depinning theories is the onset of a
characteristic length scale, the dislocation correlation length
ξ , below which the dislocation line displays fractal charac-
teristics with nontrivial roughness. The length ξ is further
predicted to scale with the applied stress in a power law man-
ner, maximize at yielding (the depinning transition point), and
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depend mainly on the dislocation line tension and the disorder
fields’ fluctuation features. Furthermore, in such theories, the
yield point is controlled by the disorder fields’ maximum
strength, analogous to typical solid solution strengthening
theories [1–4]. Nevertheless, traditional elastic depinning the-
ory does not address the added complexity of the dislocation
stacking fault, namely the fact that a gliding dislocation is
composed of two dislocation partials’ lines that glide together
and are separated by a high-energy stacking fault, of average
width WSF . In metallurgy of pure single-component metals,
the width WSF is inversely correlated to the material’s yield
strength [19], but its role in strengthening of multicomponent
metals, when strong disorder is also present, has been unex-
plored.

We investigate the interplay of disorder and stacking faults,
by investigating a multitude of equiatomic solid solutions
through the use of molecular dynamics simulations [20]. The
choices of the studied materials are motivated by prior studies
that provided benchmarks for traditional depinning behavior
(Fe0.7Ni0.11Cr0.19 [17] and FeNi [18]), and also by moti-
vating experimental findings on equiatomic multicomponent
alloys (CrCoNi, CrMnCoNi, CrFeCoNi, CrMnFeCoNi, and
Fe0.4Mn0.27Ni0.26Co0.05Cr0.02) that point towards exceptional
strength [21–25]. Equiatomic fcc HEAs with low stacking
fault energy showed an excellent balance between strength
and ductility, particularly at cryogenic temperatures [3,4]. In
an experimental study [4], it was shown that the yield strength
of the alloys has the following order at 77 K: CrCoNi >

CrMnCoNi > CrFeCoNi > CrMnFeCoNi, which indicates
that the alloys with the most elements are not necessarily the
strongest. Using molecular dynamics (MD) simulations, this
Letter focuses on the mobility and geometry of edge dislo-
cations in several random HEAs, employing LAMMPS [26]
and modified embedded atom method (MEAM) interatomic
potential [27]. Our focus is the depinning behavior of a model
configuration of single edge dislocations under shear stress
that drive ideal dislocation glide at the low temperature of 5 K.

MD simulations can successfully describe the complicated
interaction between stacking faults and chemical disorder dur-
ing loading, at the atomic scale [17,18]. There are several MD
based studies that explained the core structure of dislocations
as well as the interaction of dislocations with solutes in fcc tra-
ditional alloys [17,18,28]. Consistent with these prior studies,
our simulations are characterized by a simulation cell with fcc
crystal and random distribution of constituent elements, cre-
ated along X = [110](lx = 252 Å), Y = [1̄11](ly = 122 Å),
and Z = [11̄2](lz = 2002 Å) containing 5 432 700 atoms [see
Fig. 1(a)]. A periodic array of dislocations (PAD) model [29]
was used to insert perfect 1

2 〈110〉 edge dislocation between
the two central [111] planes in the cell. Periodic boundary
conditions (PBC) are applied in both X and Z direction, while
the fixed boundary condition is used in the Y direction. Vol-
ume along the Y direction is divided into three regions, where
the central region contains the usual MD mobile atoms and
is sandwiched between the fixed upper and lower regions of
several atomic layers. First, atomic relaxation is performed
using the NPT ensemble to ensure that the stresses in X and
Z directions are minimized. Then stress-controlled loading is
considered where the force Fx = σAN±exz is applied to the
upper (+) and lower regions (−) with the area of A and N±
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FIG. 1. (a) Two partial dislocation lines dissociated from an
edge dislocation for equimolar FeNi and CrMnFeCoNi alloys during
flow. Dislocation line direction [1 − 12] and Burgers vector direction
[110] as well as the size of the box in these directions are presented.
(b) σc for all the alloys in this study. The inset represents the dislo-
cation velocity as a function of σ for Fe0.4Mn0.27Ni0.26Co0.05Cr0.02,
and beyond σ � σc the dislocation keeps moving. (c) Two partial
dislocations separated by stacking fault (red) at depinning stress for
seven SSAs. Atoms with fcc and hcp structures are colored by green
and red, respectively.

atoms. The simulations are performed in the NV E ensemble
with the temperature controlled by a Berendsen thermostat
at 5 K [30]. A time step of 4 fs is used. All seven elemen-
tal compositions are simulated up to 300–600 MPa above
depinning stress (10–20 different stress values). Each alloy
composition is realized three different times. Dislocation and
crystal structures are analyzed using a dislocation extraction
algorithm (DXA) [31] and common neighbor analysis that
are implemented in OVITO software [32]. Beyond the apparent
computational intensity of this work, it is worth mentioning
that the results of this work are based on the analysis of
more than 0.5 PB of atomic configurational data that is locally
stored, given that the dynamics of dislocations is tracked for
10–20 loading stresses at many time steps ( 120) for every
alloy.

The characteristics of the geometry and mobility of edge
dislocations in different HEAs are shown in Fig. 1 and Fig. 2.
Figure 1(a) has a dislocation line direction [1 − 12] and
Burgers vector direction along [110]. The figure shows two
Shockley partial dislocations in their glide plane, which are
dissociated from an edge dislocation for equimolar FeNi and
CrMnFeCoNi alloys when σ has a large value of 2000 MPa.
The overhang of partial dislocations in CrMnFeCoNi can be
seen in this figure. Figure 1(b) shows the depinning stress
(σc) identified for seven HEAs. σc is the stress at which the
dislocation keeps moving [see the inset of Fig. 1(b)]. Based
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FIG. 2. (a) Position and velocity of an edge dislocation as a
function of time for equimolar FeNi and CrMnFeCoNi for two
different applied stress values. (b) The velocity of edge dislocation
as a function of applied shear stress subtracted by depinning stress
(σc) for several SSAs. β was calculated by fitting these data with a
power-law form [14].

on σc, we identify two classes of alloys—the four stronger
(i.e., CrCoNi, CrMnCoNi, CrFeCoNi, and CrMnFeCoNi) and
the three softer ones (i.e., FeNi, Fe0.4Mn0.27Ni0.26Co0.05Cr0.02,
and Fe0.7Ni0.11Cr0.19). Figure 1(c) shows the stacking fault
area and roughness for all these alloys at their corresponding
depinning stress. While all alloys host rough dislocations,
the roughness of the four stronger alloys displays overhangs
that resemble domain walls in disordered ferromagnetic thin
films [33–35] that lead to dipolar-forces dominated crossover
effects [35]. It is also worth noting that the observed alloy
CrCoNi with the largest depinning stress and visibly large
roughness has the smallest stacking fault area, consistent with
experimental evidence on the key role of stacking faults for
this alloy [22].

The roughness of a dislocation line is given by [17,18]

R(l ) = 〈[x(z + l ) − x(z)]2〉 1
2 , where x and z represent glide

and dislocation line directions, respectively [Fig. 1(a)] and
x(z) refers to the dislocation segment position at height z. As
(σ → σc), dislocations relax to new configurations through
avalanches [14]. For σ < σc, one defines also the Hurst ex-
ponent H through [17,18,36]: ln(R) = H ln(l ) + c, with H
ranging in [0.5–1] for dislocation lines [17,18,36]. Going
beyond σc, the mobility of dislocations is influenced by
dislocation-solute interactions. In fcc SSAs, the relationship
between the velocity of dislocation line and external stress
is [14,17,28] v(σ ) ∝ (σ − σc)β . Figure 2(a) shows first the
position and the velocity of an edge dislocation as a function
of time for equimolar FeNi and CrMnFeCoNi in two different
σ . Figure 2(b) represents velocity as a function of σ − σc,
which is then fitted accordingly. The variation of the exponent
values β is unexpected and we interpret it as a result of
strong collective pinning of the two partials; indeed, recently
similar physics has been found in magnetic domain walls
underlining the importance of collective phenomena [37]. It
is clear that the effective β exponent is higher for the three
softer alloys than for the other four alloys and, meanwhile,
FeNi and Fe0.7Ni0.11Cr0.19 show similar results to previous
studies [17,28].

Figure 3(a) represents the radial distribution function [g(r)]
for CrCoNi and CrMnFeCoNi alloys when σ = σc. More
fluctuations in g(r) can be seen for the strongest alloy (i.e.,

FIG. 3. (a) Radial distribution function [g(r)] for CrCoNi and
CrMnFeCoNi alloys when σ = σc. The ratio of Nhcp/N0hcp as func-
tion of time, where N0hcp is the number of hcp atoms at t = 0
between two partial dislocation lines for the four stronger alloys
when (b) σ = σc and (c) σ > σc + 300 MPa. The straight lines sep-
arate two different regimes for each alloy.

CrCoNi). While, at σ � σc, the number of hexagonal close
packed (hcp) atoms inside the stacking faults approaches
a constant value [Fig. 3(b)], this number increases drasti-
cally for σ > σc [Fig. 3(c)] after showing a similar behavior
(regime) with Fig. 3(b). It is noteworthy that the velocity and
stacking fault width of dislocation lines [see also Fig. 5(a)
below] were reported just for the first regime. At σ > σc,
the roughness was averaged from five configurations of dis-
location lines at different times. Due to the high fluctuation
of dislocation lines in four stronger alloys and to compare

FIG. 4. (a) Mean value of correlation length (ξ ) and (b) satu-
ration roughness (Ra) of two partial dislocations which dissociated
from an edge dislocation in different HEAs as a function of applied
shear stress where the value H = 0.5 is fixed.
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FIG. 5. (a) Stacking fault width between two partial dislocations
dissociated from an edge dislocation as a function of applied stress
for several HEAs. The vertical dash lines mark the depinning stress
for each alloy. (b) Stacking fault stress at depinning stress (σ�SFc )
versus σc for several HEAs.

the roughness with the same criteria, the correlation length
was calculated by considering H = 0.5 (see Fig. 4). Figure 4
shows the correlation length (ξ ) and saturation roughness (Ra)
as a function of stress, although a large correlation length for
the three softer materials was observed, with Ra at depinning
for four stronger alloys being much larger than the three
softer.

Figure 5(a) shows the stacking fault width (WSF ) between
two partial dislocation lines for each alloy as a function of
stress. For WSF , we calculate the average location of each
partial dislocation line in the glide direction and then sub-
tract the two. We find that the stacking fault width (WSFc )
is maximum at the depinning stress point σc (cf. Ref. [12]).
Similarly, a stacking fault stress at the depinning stress (σ�SFc )
is calculated [12] from

σ�SFc = 1

8π

(
2 + ν

1 − ν

)(
μ111/110bp

WSFc

)
, (1)

where bp, μ111/110, and ν are Burgers vector of each partial
dislocation, shear modulus, and Poisson ratio, respectively.
σ�SFc versus σc are shown in Fig. 5(b). We see a good corre-
lation between σ�SFc and σc for both types of behavior of the
yield stress, separately 5(b) (see the lines to guide the eye).
Thus the depinning stress is more sensitive to stacking fault
stress for four stronger alloys with a bigger slope. Figure 5(b)
[see also hardening factor in Fig. 6(a) below] illustrates again
the complex role of dislocation roughness and stacking fault
width on the value of the depinning stress. By comparing

FIG. 6. (a) σc versus τ0/A0 [Eq. (2)]. (b) σc (this study), τ0

(Varvenne’s model), and their related descriptors. Descriptors A
[i.e., saturation roughness at depinning stress (Rac ), stacking fault
width at depinning stress (WSFc ), hardening factor (Rac/WSFc ), and
correlation length (ξ )] and descriptors B [i.e., line tension (�) and
shear modulus (μ111/110)] were calculated based on MD simulations,
while descriptors C [i.e., atomic misfit (δ), shear modulus misfit (δG),
and valence electron concentration (VEC)] were calculated based on
Refs. [38–40]. All data were normalized for each quantity for the
different alloys.

CrCoNi and FeNi in Fig. 5(b), we observe that both have rela-
tively large σ�SFc , but a big difference in respective depinning
stresses. This is related to the larger dislocation roughness at
depinning for CrCoNi in comparison to FeNi.

In commonly adopted models of solid solution strength-
ening, the dissociation, in face-centered-cubic (fcc) materials,
of an edge dislocation into two partials, during loading, are
minimally considered; while, in most cases, the effects are
naturally expected to be minimal, they are significant in the
case where the roughness of dislocation lines is comparable
with the stacking fault width. In particular, it is worth notic-
ing that a solid solution strengthening model for equiatomic
alloys [1–4] represents a relationship between the yield stress
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at 0 K τ0, and only the atom size mismatch (δ) [1,2], as

τ0 ∼
(

1

�

) 1
3
(

μ
1 + ν

1 − ν

) 4
3

(δ)
4
3 , (2)

where � is line tension. Our results have been developed on
the phenomenological basis of Eq. (2) and may be considered
in relative agreement. Nevertheless, our results make a further
step in the investigation of complex, mutual elastic interac-
tions of rough dislocation partials, when their mutual average
distance WSFc is comparable to the partials’ roughness Rac .
While Eq. (2) includes minimal effects of mutually parallel
partial dislocations at stacking faults [8], we show that there
is a nontrivial interplay of very strong pinning disorder (large
Rac ) and relatively small WSFc . To realize which quantities
affect depinning stress, correlation between depinning stress
and its descriptors [i.e., saturation roughness at depinning
stress (Rac ), stacking fault width at depinning stress (WSFc ),
hardening factor (Rac/WSFc ), and correlation length (ξ )], Var-
venne’s model yield stress at 0 K and its descriptors [i.e.,
line tension (�) and shear modulus (μ111/110)], misfit pa-
rameters and valence electron concentration (VEC) is shown
in Fig. 6(b) for all SSAs when the values are normalized.
A good correlation between the depinning stress and model
predictions for the yield stress is observed for three alloys with
the lowest yield stress [Fig. 6(b)], whereas the scaling for the
four stronger alloys is different [see Fig. 6(a) with a line to
guide the eye].

Figure 6(b) represents the strong correlation between de-
pinning stress and δ, and the ratio of Rac/WSFc . The last
correlations represent a hardening factor which can explain
strengthening based on stacking fault width and element-

based chemical disorder. The stronger alloys at depinning
stress have high roughness as well as low stacking fault
width, indicating that in the four stronger alloys the difference
between misfit parameters (misfit shear modulus and misfit
atomic size) in the fcc and hcp phase can play an important
role where the lower stacking fault width (less number of hcp
atoms) leads to a higher strength.

In summary, this study investigated the geometry of edge
dislocations and their mobility under the application of exter-
nal stress for seven random fcc SSAs. At the top four stronger
alloys, due to the fact that stacking fault widths are very
small, the mutual elastic interactions of the corresponding
partials at σ � σc are really high and lead to exceptional
strength through an interplay of strong-disorder depinning
of two closely spaced and spatially correlated elastic lines.
Even though elastic depinning theories [13] have not yet in-
vestigated this particular regime, we provided extensive and
consistent evidence for the existence of this regime, domi-
nated by roughness-induced strong elastic interactions at the
stacking fault that may significantly influence hardening in
these materials.
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Agreement No. 857470 and from the European Regional
Development Fund via the Foundation for Polish Science In-
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Centre for Nuclear Research in Poland.
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