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Abstract: Identification of elastic and plastic properties of materials from indentation tests received
considerable attention in the open literature. However, unambiguous and automatic determination
of parameters in the case of the crystal plasticity (CP) model is still an unsolved problem. In this
paper, we investigate the possibility to unambiguously identify the CP parameters from spherical
indentation tests using finite element method simulations combined with evolutionary algorithm
(EA). To this aim, we check the efficiency and accuracy of EA while fitting either load–penetration
curves, surface topographies, or both at the same time. By fitting the results against simulation data
with known parameters, we can verify the accuracy of each parameter independently. We conclude
that the best option is to fit both load–penetration curve and surface topography at the same time. To
understand why a given fitting scheme leads to correct values for some parameters and incorrect
values for others, a sensitivity analysis was performed.

Keywords: crystal plasticity; optimization; evolutionary algorithm; indentation

1. Introduction

The optimal approach to establish the properties of metallic materials is to apply con-
ventional mechanical testing such as tension, compression or torsion, possibly in multiple
directions if the presence of anisotropy is expected; however, such an approach is often
unavailable due to limited specimen dimensions. In the case when only a thin layer of
the material is available, one commonly used solution is to use micro- or nanoindentation.
Such a situation can occur, e.g., in the case of coatings [1,2] or when only a thin layer next
to a surface of the bulk material was obtained by some surface treatment, e.g., surface heat
treatment [3], carburizing or nitriding [4] or ion implantation [5,6]. This last case is often
studied as a convenient way to mimic the microstructure and property changes introduced
by neutron irradiation in fission and fusion nuclear reactors.

The strain and stress state in the indented material is complex and non-uniform;
therefore, a convenient way to simulate this problem comes through the usage of the finite
element method (FEM) [7,8], which makes it possible to apply complicated boundary
conditions, including detailed treatment of contact [9], which is especially important
in indentation simulations. In addition, the introduction of nonlinear material models
including plasticity and damage is relatively straightforward, especially when automatic
code generation software, such as AceGen [10,11] or MFRONT [12], are used.

In the case of metallic materials, at the micro- and nanoindentation scale, the appropri-
ate microstructure level is the level of single crystals or grains of the polycrystal. This is
why the coupling of the FEM with the crystal plasticity (CP) theory is an obvious approach.
So far, such simulations have been reported in numerous contributions, see, e.g., [13–15]
for an overview.

In general, obtaining the correct set of material model parameters in CP is more
challenging than in macroscopic plasticity (e.g., J2 plasticity), even when conventional
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mechanical testing is applied. Therefore, a number of automatic optimization strategies were
developed so far. Gradient optimization was used in [16] to determine the parameters of Mg
alloy. The Newton–Raphson algorithm was used to identify the parameters of AISI 316LN
austenitic stainless steel [17]. The Levenberg–Marquardt method was used to optimize the
parameters of Inconel 718 in [18]. Bayesian optimization was applied to obtain parameters
of high strength steel 50CrMo4 in [19]. Particle swarm optimization was used to determine
the CP parameters of polycrystalline Cu in [20]. Evolutionary algorithms (EAs) were used
to optimize the parameters of polycrystalline materials possessing face centered cubic (FCC)
lattice (copper: [21,22]), body-centered cubic (BCC) (interstitial-free steel [21], martensitic
steel [23], Nb and dual-phase steel [24]), hexagonal close-packed (HCP) lattice (Zr alloy [25],
Ti (pure and alloy) [24,26,27], Mg alloy [21,28,29], and Zn (pure and alloy) [30,31]). As can
be seen, the EA method is the most commonly used one for obtaining the CP parameters of
polycrystalline metals and alloys. Concerning the data used for fitting, the stress–strain
curves were typically used [16–30]. However, crystallographic texture [24,26,31], digital
image correlation (DIC) data [17] and other experimental data [24,25] were also used for
fitting in some research.

Obtaining the optimized macroscopic plasticity parameters through the usage of indenta-
tion results has also been subjected to considerable attention, both in the case of pyramidal
and spherical indenters. For example, in [3], the macroscopic plasticity model parameters
of Z38CDV5 steel were identified based on load–displacement curves coming from Vickers
microindentation tests. A similar procedure for spherical indentation was reported in [32].
The procedure was used to determine the yield stress and strain hardening exponent of
100C6 steel. Fitting one-parameter analytical expression for strain hardening based on
spherical indentation results for carburized and nitraded steel was reported in [4]. The
Kalman filter method was used in [33] to determine two parameters relating compositional
variation and stress–strain transfer in elasto-plastic functionally graded layer. The proce-
dure used only load–displacement data as an input and using two values for the tip’s radius
were necessary. Several methods to directly infer the parameters of power-law plasticity
models were developed by Kucharski and Mróz, cf. e.g., [34,35] and references therein. A
method using spherical indentation to determine the yield strength and hardening param-
eters for various models was presented in [36]. On the other hand, the methodology to
obtain elastic and plastic parameters from sharp indentation was presented in [37].

So far, the determination of crystal plasticity model parameters from indentation was
also a subject of considerable attention. In [38], the CP parameters were obtained by
fitting the experimental load–displacement curves using a trial and error approach. In [39],
the analytic expressions to determine the hardening exponent from spherical indentation
based on three indicators (slope of indentation curve in logarithmic scale, contact area, and
ring-based pile-up/sink-in volume) were developed.

Chakraborty and Eisenlohr [40] studied in detail the influence of the choice of the ob-
jective function on the possibility to obtain the correct set of crystal plasticity parameters in
the CPFEM study of conospherical indentation. The Nelder–Mead (NM) simplex algorithm
was chosen as an optimization algorithm. A rate-dependent power-law CP model was used.
The paper reports using fitting of either the (1) load–displacement (LD) curve, (2) surface
topography (ST), or (3) both as the objective function. Three parameters were optimized.
It was concluded that the best results can be obtained using both load–penetration and
surface topography, while using only surface topography yields the worst results. Fitting
two crystallographic orientations at the same time did not increase the accuracy of the
optimized parameters and lead to increasing the computational cost. Engels, Vajragupta,
and Hartmaier [41] also used the NM algorithm to optimize the CP parameters from in-
dentation; however, they fitted the topography of the deformed surface only along the
lines going through pile-up maxima rather than considering the entire surface as in [40].
The optimization task was also more challenging due to the more complicated material
microstructure (lath martensite).
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The trust region reflective algorithm was applied in [42] in order to optimize the pa-
rameters of ARMCO iron subjected to nanoindentation. The experimental load–penetration
and surface topography data were used to find four parameters of the nonlocal crystal
plasticity model; however, only one surface profile (one cross-section) was used and, due to
large differences between experimental and measured response, it is hard to say whether
the pile-up or sink-in pattern reflecting the crystal symmetry was correctly reproduced.
It is also questionable to calibrate the parameters accounting for size-independent and
size-dependent effects at the same time. Logically, the more sound approach would be
to find the parameters of the conventional crystal plasticity first (using the experimental
data in the size-independent regime) and then calibrate the parameter accounting for size-
dependence by choosing the smaller tip’s radius or shallower depth. Finally, it was shown
that the initial set of parameters affects the values of the calibrated parameters considerably.
The parameter ambiguity study (checking if the same set of parameters is obtained when
fitting the simulation to simulation data with known parameters) was also not performed.

In this paper, we performed an analysis of the possibility to unambiguously determine
the hardening parameters of the standard crystal plasticity model by using evolutionary
algorithm coupled with finite element simulations. For this, both load–displacement data
and surface topographies are taken into account. In Section 2, the CPFEM formulation and
EA details are described. The Section 3 presents results of the performed optimizations and
discussion. The Section 4 contains conclusions.

2. Methods
2.1. Crystal Plasticity Finite Element Method

The classical crystal plasticity model is applied. The particular implementation of the
rate-dependent crystal plasticity in the total Lagrangian framework was already described
in Section 2.1 of [43] and in Section 3.1 of [44]. Therefore, here we only recapitulate the
hardening model as this is crucial for understanding which parameters are subjected
to calibration.

The metallic material possessing face centered cubic (FCC) structure and deforming on
12 {111}〈110〉 slip systems is considered. The rate of shearing γ̇r on a given slip system r
depends on the ratio of the resolved shear stress and the critical resolved shear stress (CRSS).
The CRSS value evolves with the amount of accumulated plastic shear Γ =

∫
∑r |γ̇r|dt

according to the Voce-type hardening law:

τ̇c
r = H(Γ)

M

∑
s=1

hrs|γ̇s|, (1)

where:

H(Γ) =
dτ(Γ)

dΓ
, (2)

and

τ(Γ) = τ0 + (τ1 + θ1Γ)
(

1− exp
(
−Γ

θ0

τ1

))
(3)

The parameters that are subjected to optimization in the present paper are the initial
CRSS τ0, the initial hardening rate θ0, asymptotic hardening rate θ1, and the back extrap-
olated CRSS (minus initial CRSS) τ1. The latent hardening parameters hrs are fixed and
equal to 1 for self-hardening and latent hardening on coplanar systems, while for latent
hardening on non-coplanar systems they are equal to 1.4.

The code of the finite element containing the CP model formulation was implemented
using the AceGen software. The AceGen package [10,11] takes advantage of automatic
code generation (from symbolic input in Wolfram Mathematica), automatic differentiation
and expression optimization. The FEM simulations were performed using the software
AceFEM. The mesh used for EA optimization had to be sufficiently refined so as to smoothly
reproduce the load–displacement curves and surface topography. At the same time, the
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number of elements should not be too large so that multiple simulations can be conducted
in a reasonable time. The mesh used in the simulations of indentation is shown in Figure 1.
It consists of 7200 linear hexahedral elements, 576 linear quadrilateral contact elements,
and 192 quadratic quadrilateral elements accounting for the hanging nodes formulation.

Figure 1. The mesh used for the crystal plasticity finite element simulations.

The following boundary conditions were prescribed. The horizontal displacements
of the nodes belonging to the lateral surfaces of the domain were forced to be zero. The
vertical displacements of the nodes belonging to the bottom surface were prescribed to
increase until reaching the value of hmax = 200 µm while the position of the indenter was
fixed. Obviously, this was fully equivalent to fixing the position of the bottom plane and
moving the indenter down; however, the former approach as applied here was easier
to implement. Similarly as in [44] the formulation of frictionless contact with spherical
tip is used. The tip is treated as a rigid body and described analytically. The contact is
enforced using contact elements. Moreover, a 4-noded quadrilateral contact element with
Lobatto quadrature and one additional degree of freedom per node was implemented
using augmented Lagrangian multipliers as described in [45]. The only difference with
respect to [44] is that here we are using tip radius equal to 200 µm whereas it was 5 nm
in op. cit. However, this does not affect the results as we used the same ratio of element
size to radius, and the crystal plasticity model is size-independent. The hanging nodes
formulation makes it possible to join elements of different size by allowing to place a node
of the smaller element in places where the larger element does not have any node. The
details of the hanging nodes implementation can be found in Section 2.4 of [15].

2.2. Optimization

In order to find the parameters of the CP model, the evolutionary algorithm [25] was
applied. The implementation of EA was written in Wolfram Mathematica but it is structured
in the same way as the previous Python implementation of EA that was applied to calibrate
parameters of VPSC [28,29,31] and SEVPSC [22] mean-field models. Nevertheless, the EA
is described here again for the sake of paper’s self-containment.

The principle of EA’s operation is as follows, cf. Figure 2. First, the hardening
parameters of every individual (within the population of Nind individuals) are randomly
generated within the specified ranges. This way, the first generation can be run. The fitness
evaluation step contains the most computationally intensive part, which is running the
CPFEM simulations of spherical indentation for each individual. Having the results of
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each individual, it is possible to asses the fitness of its parameters. This is going to be
explained in detail later. After the fitness evaluation is completed, the highest-ranked
individuals (the ones having lowest difference with respect to the goal) are selected. Next
step is the stop criterion. Various choices can be made at this stage, e.g., mean standard
deviation of the fitness among the individuals being lower than some prescribed value,
cf. [31] or the saturation of the increase in fitness in subsequent generations. However,
in this paper we have applied the simplest possible stop criterion, which is reaching the
prescribed number of generations Ngen. If the stop criterion is met, the operation of EA is
terminated. Otherwise, the parameters of the next generation are produced. Two steps are
used to this aim. The first one is the crossover. It consists in randomly selecting the pairs of
individuals from the set of highest-ranked individuals and averaging their parameters. The
second is mutation and consists of changing some of the parameters of the next generation
individuals. Specifically, the loop goes over all parameters and for each generates the
random real in the range from 0 to 1. If this number is lower than the mutation probability
Pmut, the given parameter is again randomly generated from the range specified in the
beginning. To sum up, the hyper-parameters of EA are the number of generations Ngen,
number of individuals Nind, number of highest-ranked individuals (allowed to produce
offspring) Nhri, and the probability of mutation Pmut. Here, Ngen = 10, Nind = 40, Nhri = 4,
and Pmut = 0.15. The stop criterion used here was only attaining the required Ngen, but the
algorithm’s performance was interactively monitored by the user.

Figure 2. The scheme of the evolutionary algorithm (EA).

What is important for the present contribution is the fitness evaluation step, cf.
Figure 2. To the best of the authors’ knowledge, the fitness evaluation accounting for
load–penetration curves and surface topographies from indentation was not used in any
EA applications (although similar fitness evaluations were already used together with
other algorithms, as mentioned in the introduction). The LD curves are compared against
the reference one by calculating the difference between load value in subsequent penetra-
tion increments. On the other hand, the surface topography difference is calculated by
creating a regular mesh in x and y directions (Figure 3a) and finding the surface position
(z coordinate) by interpolation. Then, the difference between the topography of a given
individual and the reference topography is just the sum of differences of z values in every
point of the mesh (Figure 3b). Note that mesh here does not refer to the FEM mesh. Note
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also that Figure 3 is only illustrative—the true regular grid used 401× 401 points. The
highest-ranked individuals selected for reproduction in the subsequent generation are
those with lowest differences with the reference.

(a) (b)

Figure 3. The graphical explanation of fitness evaluation based on surface topography. (a) Regular
grid of points. (b) Point-by-point differences between two surfaces projected onto the regular grid.

3. Results and Discussion
3.1. Parameter Optimization

In order to demonstrate that the evolutionary algorithm is able to find a correct set of
crystal plasticity parameters and in order to check if the determined set is unambiguous,
the EA was used to fit the load–penetration curve and surface topography against data
coming from simulation. Obviously, the same material model was used in the reference
simulation and the hardening model parameters were known, see Table 1. The values of
the parameters are intended to reproduce the behavior of pure Ni and were adopted from
the literature [44,46]. The simulations were run for 001 orientation only. The ranges of the
possible values for parameters are presented in Table 2.

Table 1. The parameters of the reference simulation (pure Nickel, cf. [44,46]).

τ0 [MPa] θ0 [MPa] τ1 [MPa] θ1 [MPa]

8 240 142 7.5

Table 2. The ranges for the parameters of the EA optimization.

τ0 [MPa] θ0 [MPa] τ1 [MPa] θ1 [MPa]

5–15 100–400 50–250 5–10

The following EA runs were performed:

• Case 1: fitting only LD curve,
• Case 2: fitting only surface topography,
• Case 3: fitting LD curve and surface topography.

In order to check the reproducibility of the results, two different initial populations
(Population 1 and Population 2) were examined. Thus, each case was run for two initial
populations, thus resulting in six EA runs in total. Figure 4 shows the normalized difference
(difference divided by the difference in the first generation) for each EA run. All the
simulations converged maximally after generation 6, with the exception of Case 3 in
Population 1, where significant difference drop appeared in the 10th generation. However,
it was checked that for that particular case additional five generations (results not shown)
did not result in any further improvement.
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(a) (b)

Figure 4. Plot of the normalized difference vs. generation in each of the EA runs stating from
Population 1 (a) and Population 2 (b).

Figure 5 shows the LD curves obtained in each EA run compared against the reference
simulation. In the cases where the LD curve was used for parameter fitting (Case 1 and Case
3), the LD curve was fitted very well. On the other hand, using only surface topography
information (Case 2) did not result in correct fit: the level of force was either too low
(Population 1) or too high (Population 2). This shows that surface information alone is not
sufficient to correctly reproduce LD curve. This highlights the fact that various choices of
initial parameters can lead to very similar surface topographies.

(a) (b)

Figure 5. The load–displacement curves obtained in each of the EA runs stating from population
Population 1 (a) and Population 2 (b).

Figure 6 shows the surface topography in the reference solution and in each EA run.
At first glance, it may seem that every map is very similar. Closer examination reveals that
Case 1 (i.e., fitting only LD curves) results in somewhat different surface topography. In
order to see it better, another figure was prepared. Figure 7 shows the maps of point-wise
differences between the solution obtained in each EA run vs. the reference simulation. In
addition, Table 3 shows the minimum, maximum, and mean values of the differences. The
differences are now clearly visible. The largest differences are present in the Case 1 (fitting
only LD). This shows that fitting LD curve is not sufficient to achieve excellent surface
topography fit, which is a counterbalance to the previously observed fact that fitting only
surface topography is not sufficient to obtain the correct LD curve.
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Reference solution:

Case 1 Case 2 Case 3
(fitting LD only) (fitting topography only) (LD + topography)

Po
pu

la
ti

on
1

Po
pu

la
ti

on
2

Figure 6. The surface topographies in the reference solution and each of the EA runs. Heights are
given in µm.

Case 1 Case 2 Case 3
(fitting LD only) (fitting topography only) (LD + topography)

Po
pu

la
ti

on
1

Po
pu

la
ti

on
2

Figure 7. The difference in surface topographies between each of the EA runs and the reference
solution. The legends present the colors related to a difference value in µm.

Table 3. The minimum, maximum, and mean values (in µm) of the differences between surface
topographies obtained in each of the EA run and the reference solution.

Minimum Maximum Mean

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Population 1 −7.275 −0.101 −0.049 0.671 0.073 0.074 −0.700 −0.044 0.008

Population 2 −4.466 −0.154 −0.023 1.042 0.755 0.185 −0.126 0.154 0.017
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The particular advantage of calibrating the parameters against the simulation data
is that the parameters of the reference simulation are known. Therefore, one can check
whether it is possible to obtain the correct set of parameters, cf. Figure 8. Regarding the
initial CRSS (τ0), initial hardening rate θ0 and saturated CRSS τ1, the value closest to the
reference was given by Case 3 regardless of population. Second best values were found
by Case 1, while Case 2 gave the worst answer. Concerning θ1, a good approximation
was obtained with Case 2 and Case 3 when starting from Population 1, but when starting
from Population 2, none of the EA runs resulted in correct value. Moreover, in the latter
case, the values filled the investigated range almost completely. In order to understand the
efficiency of various EA simulations in determination of correct parameters, a sensitivity
analysis was performed.

Population 1. Population 2.

(a
)τ

0
(b

)θ
0

(c
)τ

1
(d

)θ
1

Figure 8. The values of the parameters obtained at each generation of each EA run. The ranges of
parameters are shown in red and the reference parameter value in light orange (thick line).
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3.2. Sensitivity Analysis

When performing a sensitivity analysis by changing a given parameter in the range
specified for EA optimization, other hardening parameters are kept fixed and equal to the
reference values (see Table 1). Figure 9 shows the sensitivity analysis for LD curves. The
highest variability can be seen for θ0 and τ1. τ0 shows moderate variability, while θ1 shows
almost no variability in the specified range. Figure 10 presents the sensitivity analysis
for surface topographies in terms of differences with respect to the reference simulation.
The raw surface topographies are shown in Supplementary Figure S1. The highest vari-
ation is present for τ1, moderate variations are shown for τ0 and θ0, and θ1 presents the
smallest variation.

(a) τ0 (b) θ0

(c) τ1 (d) θ1

Figure 9. Sensitivity of LD curves to (a) τ0, (b) θ0, (c)τ1, and (d) θ1 (other parameters were kept fixed).

It is well accepted in the literature (cf., e.g., [47]), that strain-hardened materials
(with little potential for further strain hardening) tend to produce pile-up, while materials
undergoing considerable strain-hardening develop sink-in. Generalizing, it can be stated
that plastic zone size is correlated with the reserves for strain-hardening and the pile-up
height is inversely correlated with it. The origin of such a behavior is that in strain-hardened
materials the movement of dislocations is restricted due to high density of obstacles so
the plastic zone size is small and pile-ups develop. On the other hand, in the material
that was not strain-hardened the dislocations can move deeper into the material. Thus,
the size of the plastic zone increases and pile-ups tend to be small or absent. Figure S1
shows that the results of CP simulations are consistent with this general understanding.
Figure S1a presents the variability of ST to τ0. With low value of τ0 (high strain-hardening
potential), pile-ups and sink-ins are extended in plane. With high τ0 (strain-hardened case),
pile-ups are sharp and close to the indent. θ0 (Figure S1b) has a similar influence as τ0.
High value of saturation stress τ1 increases the strain-hardening reserves so the influence
of this parameter is opposite to the influence of τ0 (Figure S1c). Finally, θ1 has very little
influence on the results in the investigated range (Figures 10d and S1d).

Let us now try to understand the efficiency of each EA in determining the proper
parameters. Case 1 that considered only LD curves, was able to find a close guess for τ0,
θ0 and τ1. Its prediction of θ1 was however the worst. The correct determination of τ0, θ0,
and τ1 is understandable in view of Figure 9a–c. On the other hand, it is not surprising that
the value of θ1 was not determined correctly (remembering that LD curve was insensitive
to this parameter alone). It was already outlined that Case 2 (considering only surface
topography) provided the worst parameter calibration. Its prediction of θ1 is however
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better than the one provided by Case 1. Although the surface topography was relatively
insensitive to the value of this parameter (cf. Figure 10d), still the variability of surface
topography with respect to θ1 was greater than the variability of LD curve in that case. Thus,
it seems that this variability enabled Case 2, to perform better in finding θ1, in particular
when starting from Population 1. Finally, Case 3 was able to find reasonably good values of
τ0, θ0, and τ1 regardless of the initial population, which is understandable considering that
both LD curves and surface topographies were sensitive to these parameters. As LD curves
are insensitive to θ1 and surface topographies are almost insensitive to this parameter, it
seems also reasonable that determination of its value when using both information for
fitting heavily depended on the initial population.

(a) τ0 = 5 10 15

(b) θ0 = 100 250 400

(c) τ1 = 50 150 250

(d) θ1 = 5 7.5 10

Figure 10. Sensitivity of surface topographies to (a) τ0, (b) θ0, (c)τ1, and (d) θ1 (other parameters
were kept fixed). A difference with respect to the reference simulation is shown. Size of the map is
2.4 µm × 2.4 µm. The legend presents the colors related to a difference value in µm.

In order to check if choosing a wider range of asymptotic hardening rate leads to
higher sensitivity, we conducted another sensitivity analysis with θ1 ranging from 1 to
20 MPa. The results are shown in Figure 11. It appears that the LD curves present a higher
variability but it is still small as compared to θ0 and τ1. On the other hand, the variability
of surface topography does not increase significantly even with the wider parameter range.
It can be thus concluded that finding precise value of θ1 using instrumented indentation
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data is a challenging task and one should rather focus on the determination of the other
three parameters while keeping the value of the asymptotic hardening rate fixed.

θ1 = 1 MPa θ1 =20MPa

Figure 11. Sensitivity of LD curves and surface topographies to θ1 in a wider range (other parameters
were kept fixed). A difference with respect to the reference simulation is shown. Size of the map is
2.4 µm × 2.4 µm. The legend presents the colors related to a difference value in µm.

3.3. Discussion

When analyzing the results obtained in this study, it is easy to see that the results of
the EA optimization greatly depend on the (here random) choice of the initial population.
This should give the hint when seeking for the parameters based on experimental data.
Namely, one should ideally perform several EA runs with different initial populations and
pick the set of parameters that gives both the LD curve and surface topography in the
closest agreement with experimental data. Another option would be to enlarge the initial
population, however, giving a hint on the number of required individuals in the initial
population is beyond the scope of the present paper.

All the performed optimization were performed for one crystallographic orientation
(001) only. One may wonder if changing the orientation could affect the effectiveness
or accuracy of the developed EA approach. To our understanding, this is not the case,
although we did not run any additional optimizations to prove this. In the slips-system-
based CP model, the symmetry of the pile-ups and sink-ins in plane is dictated by the
crystallographic orientation. On the other hand, the corresponding heights and depths
are affected by hardening parameters. Therefore, it seems that changing the orientation
or even adding additional orientations (the latter case impacts the computational cost
proportionally to the number of orientations) will not change the results considerably. In
fact, our understanding of this issue is consistent with the observations of [40]. The authors
studied the influence of using two orientations simultaneously in their optimization. They
concluded that although the computational cost was doubled, there was no noticeable
improvement in the performance of their optimization algorithm.

All the optimizations presented in the article were performed using the frictionless
contact with rigid indenter. One may argue that friction is important and should not be
neglected. Although modeling of friction is a broad and interesting subject by itself, here
we restrict our attention to the simplest case of Coulomb friction that was considered
in majority of the related literature. In [38,48], the authors concluded that in spherical
indentation friction has a negligible effect on load–displacement curves but noticeably
affects the pile-up heights. We have performed our own study of the effect of friction. To
this aim, the implementation of the contact element with additional degrees of freedom
responsible for tangential contact was used. Figure 12 shows the effect of friction on LD
curves. Indeed, consistently with op. cit., the curves are almost the same until about h

R = 0.4.
However, they differ considerably at a later stage. As in [38], the ratio hmax

R was about 0.1, it
is logical that their results did not show the difference that can be observed at extremely
large penetration.
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Figure 12. The sensitivity of load–displacement curves with varying Coulomb friction coefficient (FL
denotes the frictionless case).

Figure 13 shows the changes of deformed surface maps with increasing friction coef-
ficient. The higher is the friction, the broader is the zone affected by plastic deformation,
which is consistent with a simple mechanistic understanding of the problem and the anal-
ysis presented in [38]. Although the code of the contact element that includes friction is
more complicated, including friction does not pose a major computational problem (it was
verified that a time of a single simulation does not increase by more than 10%). Friction
could be thus included in two different ways. In the first one, friction could be considered
as an additional parameter that is being optimized. Such an approach would make the
studied problem more ambiguous. In the second, one could use a fixed friction coefficient;
however, as the value of the friction coefficient is not known, one would have to take
some arbitrary value (e.g., 0.3 was used in [40]). Finally, in the studied example of fitting
against the reference simulation with known parameters taking arbitrary value of friction
coefficient would lead to exactly the same answer and all the conclusions would stay
unchanged; thus, we claim that restricting our attention to the frictionless case is justified
in the present paper; however, in the future studies devoted to obtaining parameters based
on real experimental data, the effect of friction will have to be carefully considered.

Frictionless µ = 0.1 µ = 0.2 µ = 0.3

µ = 0.4 µ = 0.5 µ = 0.6

Figure 13. The sensitivity of surface topographies with varying Coulomb friction coefficient.

Obviously, the CP model considered in this paper is one of the simplest. In order to take
into account some additional effects, typically models also contain additional parameters.
In the recent years, some attention was paid to modeling of indentation size effect (ISE).
In the case of spherical indentation ISE manifests itself by an increase in hardness with a
decrease in indenter’s radius (with a fixed depth-to-radius ratio). In general, two types
of approaches were presented in order to take ISE into account. In the first one, the size
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effect is assumed to result from the incompatibility of accumulated plastic deformation.
Such an approach was used to simulate indentation in the presence of ISE in [49–53]. In the
second approach, the ISE stems not only from the incompatibility of accumulated plastic
deformation, but also from the history of incremental plastic incompatibility. Simulations
of indentation following this point of view were presented in [46,54,55]. In this paper, we
performed simulations with indenter’s radius equal to 200 µm, so we do not expect any
significant ISE in this regime. There are however no fundamental restrictions in the case
one would like to use the optimization method proposed here to obtain the parameters
of a size-sensitive model. One should only consider two things. First is the increased
number of parameters, which is always challenging in optimization; however, it seems that
using information from indenters with different radii should help circumvent this problem.
The other thing that should be carefully taken into account is the computational time.
Note that here, the evolutionary algorithm was conducted on a standalone workstation.
These particular simulations could be also performed on any modern PC with reasonable
performance. The time spent on the simulations would probably then increase several times
but would also stay in the same order of magnitude. As the simulation time in the case of
the strain gradient CP model is typically much larger than in standard CP (due to additional
degrees of freedom), the cost of performing an optimization may become prohibitive not
only on standard PCs, but also using an efficient workstation. Thus, one should consider
switching to a high-performance computer when dealing with a size-sensitive CP model.

As mentioned in the beginning, nanoindentation is a useful way to study the behavior
of ion-implanted surface layers. Wang et al. [56] simulated indentation of irradiated pure
zirconium. Nie et al. [57] applied the dislocation density-based CP model to simulate the
behavior of irradiated A508-3 steel. Xiao et al. [52,58] applied the strain gradient CP model
to irradiated copper and tungsten. In most of the CP models accounting for irradiation,
the hardening stemming from irradiation defects is dependent on their number and size.
It can be also easily omitted, e.g., by setting the number of defects to zero; therefore, the
suggested solution for this application is to perform two subsequent optimizations. In the
first one, the parameters of a virgin material should be established. In the second, only the
additional parameters accounting for irradiation effects should be established.

The other interesting effect, which in the context of continuum modeling, was exam-
ined in one paper only [44], is the effect of chemical disorder in concentrated solid-solution
alloys (CSAs). In op. cit., this effect was taken into account by merging the isotropic plas-
ticity and CP models using a single parameter. The simulation time increases to some
extent, but the increase is moderate and performing the optimization in a reasonable time
on a standard machine should be possible. The more important challenge is the number
of parameters: the model includes the hardening parameters of both isotropic and crystal
plasticity models together with the additional parameter accounting for their proportion.
The problem of numerous parameters is also inherent to hexagonal close packed (HCP)
materials (such as e.g., Ti, Mg, Zn, and Zr) where there are many active slip and twinning
systems and each needs its own set of hardening parameters. As we have seen, in [40]
only three parameters were subject to optimization while four parameters were considered
here. In order to unambiguously determine more parameters one should also increase the
amount of information for fitness evaluation. Suggesting which additional information
could be added is however outside the scope of the present paper.

4. Conclusions

We have performed a numerical analysis of the possibility to unambiguously deter-
mine the hardening parameters present in the crystal plasticity model using evolutionary
algorithms with two types of data coming from spherical indentation. Namely, the load–
displacement curves or surface topographies were fitted. We concluded, in agreement
with [40] (but implementing a different approach), that using both information results in
best parameter values and using only LD curves is better than using only ST.
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Based on the knowledge gained in the course of this study, we plan to perform a similar
analysis using experimental data. Aside from calibrating the parameters of standard CP
model, the parameters responsible for some specific effects, such as irradiation or chemical
disorder, will be also calibrated; this is however outside the scope of this contribution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12101341/s1, Figure S1: Sensitivity of surface topographies
to (a) θ0, (b) τ0, (c) τ1 and (d) θ1 (other parameters were kept fixed). Size of the map is 2.4 µm × 2.4 µm.
The legend presents the colors related to a vertical displacement value in µm.
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