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There are a multitude of applications in which structural materials would be desired to be nondestructively
evaluated, while in a component, for plasticity and failure characteristics. In this way, safety and resilience
features can be significantly improved. Nevertheless, while failure can be visible through cracks, plasticity is
commonly invisible and highly microstructure-dependent. Here, we show that an equation-free method based on
principal component analysis is capable of detecting yielding and tertiary creep onset, directly from strain fields
that are obtained by digital image correlation, applicable on components, continuously and nondestructively.
We demonstrate the applicability of the method to yielding of Ni-based Haynes 230 metal alloy polycrystalline
samples, which are also characterized through electron microscopy and benchmarked using continuum poly-
crystalline plasticity modeling. Also, we successfully apply this method to yielding during uniaxial tension of
Hastelloy X polycrystalline samples, and also to the onset of tertiary creep in quasibrittle fiber composites under
uniaxial tension. We conclude that there are key features in the spatiotemporal fluctuations of local strain fields
that can be used to infer mechanical properties.

DOI: 10.1103/PhysRevMaterials.6.103601

I. INTRODUCTION

Under small stresses, materials deform in a linear, elastic,
manner. With higher stresses, the deformation response devi-
ates from the linear one, which can be due to many different
reasons, e.g., nonlinear elasticity, damage, or plasticity. Thus
the methods of prediction for such behavior also become
highly system-dependent. When the stresses are applied for
extended periods of time, slow time-dependent deformation
occurs—the material creeps. The creep case is more com-
plex than yielding due to, e.g., history effects from damage
accumulation and plastic deformation buildup as well as the
resulting stress redistribution. An equation-free prediction
scheme [1–6] for these phenomena would not only be im-
portant in practical applications, but also for the fundamental
physics involved: What are the universal features that can be
exploited?

Yielding represents a transition from an elastic state to a
plastic one. There exists several engineering definitions of
yielding [7], such as the proportionality limit or the offset
yield point. The former is the point when the deviation of the
stress-strain behavior from the Hookean behavior exceeds a
predetermined threshold (for example, 1%), and the latter is
simply the stress at a predetermined point, commonly at 0.2%
engineering strain (denoted usually as σ0.2%). The important
question then is as follows: Are these engineering definitions
of yielding good enough? To at least avoid the problem of
predetermined thresholds and constant points, we define here
the yield strain to be the maximum of the second derivative of
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stress with respect to strain [8],

εy = arg max
∂2σ

∂ε2
, (1)

which nicely captures the point of maximum curvature.
The materials we have used for yield testing are two

nickel-based superalloys. They have been chosen due to their
excellent mechanical properties [9–12], which make them
important for a range of practical applications, in particular
high-temperature applications.

However, in many practical applications the loading of
materials is not through a constantly increasing stress. Instead
the load is static, leading to time-dependent creep behavior.
Moreover, in creep defining the onset of failure is even more
difficult, and the creep characteristics of different materials
can vary. The common thing is that creep failure is preceded
by an acceleration of strain accumulation (tertiary creep)
[13–16], so a natural definition for the onset of creep failure is
the point of minimum strain rate. This can also be thought of
as a transition from one state to another—from a decelerating
strain evolution to an accelerating one. The ideal thing for
applications would then be a touch-free nondestructive testing
(NDT) method for determining this point of creep failure
onset using easily acquirable data.

As a test material for creep, we have used a quasibrittle
disordered material—paper. The creep behavior of paper is
fairly well known [15–17] and can be collapsed to a single
master curve. The behavior divides into three phases: pri-
mary, logarithmic, and tertiary creep. Primary and logarithmic
creep regimes are characterized by a power-law decrease of
the strain rate until a strain rate minimum is reached. After
this minimum—in the tertiary creep regime—the strain rate
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FIG. 1. (a) An image of the sample during a tensile yielding test,
showing the applied speckle pattern and the extensometer measuring
the global strain in the sample. The local strain field εyy obtained from
DIC is superimposed on the sample. (b) A schematic representation
of the PCA-based detection method used. The method takes as an
input a set of strain fields at time steps k, performs PCA, and outputs
two PCA components. The second PCA component has a clear peak
corresponding to the maximum fluctuations in the system.

increases rapidly, which finally leads to the failure of the
sample. In paper and the geometry used in these experiments,
the strain rate minimum has been observed to occur at t =
0.83 × tc [15], where tc denotes the time of failure of the
sample. This statistical relation is known as the Monkman-
Grant relation [18] and provides a method of predicting the
sample failure time from the strain rate minimum. However,
the real-time determination of the minimum from a noisy
strain rate signal is a difficult task.

Digital image correlation (DIC) [19–21] has been a popular
NDT technique for a fairly long time. Data for DIC can
be acquired easily using regular cameras, and a plethora of
easy-to-use software [22–25] exists for DIC computations.
However, the strain maps obtained using DIC [for an exam-
ple, see Fig. 1(a)] are commonly used only to study, e.g.,
the localization phenomena related to deformation [26–31]
or the shape of the strain field in a complex geometry. The
information “hidden” in the DIC images is underutilized, and
exploiting it in a meaningful way would be a major goal for
materials informatics.

To capture these transitions to plasticity-dominated states,
we provide in this paper a solution based on principal com-
ponent analysis (PCA) [32–38]. The main idea of the method
is to probe the spatial fluctuations in the local strain fields, as
these are a characteristic feature of plasticity. The detection
method takes as an input a set of strain fields (computed using
DIC) and outputs two principal components that show the
transition between two states and a uniquely defined transition
point (point of maximum fluctuations, seen as a peak in one
of the components). A schematic of the method can be seen

TABLE I. Chemical composition of the two metal alloys used
in the yielding experiments as weight percentages provided by the
sample manufacturer Haynes International Company.

Haynes 230 Hastelloy X
(wt. %) (wt. %)

Al 0.37 0.11
B 0.004 <0.002
C 0.1 0.070
Co 0.2 1.22
Cr 21.87 21.27
Cu 0.03 0.09
Fe 1.23 18.83
Mn 0.50 0.64
Mo 1.46 8.29
Ni Bal. Bal.
P 0.007 0.015
Si 0.31 0.24
W 14.27 0.52
S <0.002 <0.002
Ti <0.01 <0.01

in Fig. 1(b), and the method has previously been shown to
work well with simulated strain fields [8] mimicking the fields
obtained using DIC. In this paper, the method is used in
detecting the yielding of two commercial metal alloys during
monotonic tensile loading of the sample. Additionally, the
method is used to detect the onset of tertiary creep in paper
from similar images.

II. METHODS

A. Experiments

To test the yielding of metal alloys, tensile tests were per-
formed on the Hastelloy X and Haynes 230 alloys provided
by Haynes International Company, which were cold-rolled
and annealed. The chemical composition of the alloys can
be seen in Table I. Flat dogbone-shaped tensile specimens (in
accordance with ISO 6892-1 standard) with a gauge length of
30 mm, a width of 5 mm (Haynes 230) or 4 mm (Hastelloy
X), and a thickness of 1.02 mm (Haynes 230) or 1.3 mm
(Hastelloy X) were cut by the wire electrical discharge ma-
chining (WEDM) method using a Robofil 200 machine. The
thickness of the samples was the same as the thickness of
the provided sheets. Three samples of each alloy were tested
at room temperature using the Instron 8501 servo-hydraulic
system. Direct strain measurement was performed by an axial
clip-on dynamic extensometer with an original gauge length
of 25 mm provided by Instron. Tensile experiments were
performed in accordance with both ISO 6892-1 and ASTM
E8 standards. To ensure appropriate alignment of the loading
string, a preliminary stress of 15 MPa was applied before
each measurement started. This value did not exceed 5% of
the yield strength of each material. Up to the yielding point,
testing speed was defined in stress rate and set for 10 MPa/s.
After the displacement reached a value of 0.5 mm, the test rate
was changed to an estimated strain rate of 0.001 s−1.

The microstructural characterization of the Haynes 230 and
Hastelloy X samples was conducted using a ThermoFisher
Scientific Helios 5 UX field emission gun high-resolution
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FIG. 2. (a) An EBSD IPF Z map of a Haynes 230 sample. (b) An EBSD IPF Z map of a Hastelloy X sample [the map legend for both
samples is presented in the inset of panel (a)]. (c) The grain structure used in the Haynes 230 simulation, assuming a pixel’s linear dimension
to be 2 μm.

scanning electron microscope (HR-SEM) equipped with an
EDAX Velocity Pro electron backscatter diffraction (EBSD)
system. The EBSD measurements were conducted using an
accelerating voltage of 20 keV and a beam current of 3.2 nA.
The EBSD grain orientation inverse pole figure (IPF) Z maps
[shown in Figs. 2(a) and 2(b)] were acquired using a step
size of 300 nm. The maps were analyzed using the EDAX
OIM Analysis 8 software to remove misindexed points by
requiring the confidence index to exceed 0.1. SEM images
[Figs. 3(a) and 3(b)] were collected at 5 keV electron beam
using in-column detector (ICD) in secondary electrons (SE)
contrast, and energy-dispersive x-ray spectroscopy (EDS) was
used to perform mapping of atomic concentration distribution
of individual elements [Figs. 3(c)–3(h)].

Prior to the measurement, the surface of the samples was
prepared by using the LectroPol-5 system provided by Struers.
Samples of both alloys underwent surface treatment by using a
mixture of methanol and perchloric acid (for Hastelloy X) and
ethanol with perchloric acid (for Haynes 230). The process
was conducted at 10 ◦C until microstructural features were
revealed.

During loading, the samples are imaged using a Canon
EOS R camera with a frequency of 0.5 Hz and illuminated
by a ring lamp. For texture, a speckle pattern is sprayed on
the samples. From these images, the DIC calculations were
performed using AL-DIC software [25], which calculates the
local displacements u = (u, v) with respect to the first image
using a circular region of interest with a radius of 1.5 mm
and placing the regions of interest every 25 μm. The area
used in the DIC calculations—the region of interest—only
includes the middle part of the sample to avoid any boundary
effects. The local strain component in the loading direction
is then calculated from these displacements as εyy = ∂v

∂y using
simple finite difference numerical differentiation. The size of
the resulting strain fields is 100 pixels × 800 pixels. An image
of the sample and the strain field obtained by DIC can be seen
in Fig. 1(a).

The experimental details of the paper creep experiments
are described in Ref. [16]. The data used here include the
global strain rate ε̇ measured by the tensile testing machine
and the local strains in the loading direction εyy measured at
different points in time. The spatial resolution of the images
is 100 μm.

B. Detection method

We start by taking the computed strain fields ε (k,i)
yy (where

the i index runs over all V spatial points and k denotes the
time step) and normalize them to a matrix X consisting of the
normalized (average value of zero and standard deviation of
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FIG. 3. (a) SEM image of the Haynes 230 sample. (b) SEM im-
age of the Hastelloy X sample. (c),(e),(g) EDS atomic concentration
maps (in at. %) of W, C, and O in the Haynes 230 sample. (d),(f),(h)
EDS atomic concentration maps (in at. %) of Mo, C, and Cr in the
Hastelloy X sample.
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unity) input vectors as rows,

X(k,i) = ε (k,i)
yy − 〈

ε (k,i)
yy

〉
√〈(

ε
(k,i)
yy

)2〉 − 〈
ε

(k,i)
yy

〉2 , (2)

where 〈·〉 denotes a spatial average. Here we have only con-
sidered the εyy component, but naturally one could make other
choices, if deemed appropriate for the situation. We then com-
pute the singular value decomposition

X = U�W T, (3)

where the columns of U are the left singular vectors, the
columns of W the right singular vectors, and the diagonal
matrix � contains the singular values of X . For each singular
value σ j there exists a singular vector s j .

The method captures the fluctuations by computing the
eigenvalues λ of the covariance matrix of the input vectors

C = X TX

V − 1
= U

(
�2

V − 1

)
U T, (4)

which can clearly be seen to relate to the singular values of X
through the relation σ j = √

λ j (V − 1).
Finally, the sorted singular vectors (starting with the largest

one) are projected onto the input vectors giving the PCA
components

PCAk
j = s j · Xk√

σ j
, (5)

which should be thought of as just a time series PCA j (t ) for
each PCA component.

The main idea is that only a few of the components already
capture most of the fluctuations present in the dataset. In
the case of material behavior, the natural interpretation of a
system described by two components is that the strain can
be divided into two contributions: reversible elastic strain and
irreversible plastic strain.

C. Simulations

For comparison, we also simulated a similar uniaxial ten-
sile test and the resulting yielding using a standard crystal
plasticity model, with material parameters that match the be-
havior of the Haynes 230 alloys, following the prescriptions
in Ref. [39] that investigated in detail the way to match poly-
crystalline Haynes 230 data. Also, the grain structure used in
the model has been chosen through a Voronoi cell tesselation,
which aims to emulate the grain structure seen in EBSD mea-
surements [see Figs. 2(a) and 2(c)], which is characterized by
randomly oriented grains with 10–20 μm linear dimension.

We study [8,40–42] tensile loading in the x-direction
for 3D polycrystalline samples with sample dimensions in
(x, y, z): (64,64,64) (3D), promoting the perspective of inves-
tigating (0.13 mm)3 sub-mm cubic 3D samples. We assume
that the linear size of each cubic pixel is 2 μm, and the
chosen Voronoi tesselation [see Fig. 2(c)] points to grains
with linear dimension 10–20 μm, as in experimental sam-
ples [see Fig. 2(a)]. The crystalline structure of the material
is face-centered cubic (fcc) aluminum (Al), with standard
stiffness coefficients (see Table II, in reference to the cubic

TABLE II. Model parameters chosen in this work, chosen in
accordance with the prescriptions in the thorough study of Haynes
230 polycrystalline alloy samples in Ref. [39].

Model Parameters Symbol Value

Dimensions Lx , Ly, Lz 64 px, 64 px, 64 px
128 μm, 128 μm, 128 μm

Elastic stiffness C11 323 GPa
Elastic stiffness C12 159.1 GPa
Elastic stiffness C44 89.5 GPa
Reference shear rate γ̇0 0.001 s−1

Rate sensitivity exponent m 0.0015
Slip-Slip interaction h0 400 MPa
Slip hardening parameter p 2.25
Saturated shear resistance τ s 678 MPa

coordinates). The digital surface image collection is assumed
to be collected at periodic applied strain intervals, similar to
the experimental study. The developed model in this work dis-
plays a similar yield point with the experimental Haynes 230
sample (see Fig. 5), and the plastic yielding differences can be
attributed to prior processing and microstructural details that
lie beyond the purpose of this work and also Ref. [39].

FIG. 4. (a),(b) The stress-strain response of the metal alloys.
The three curves represent the three different samples. The purple
rectangles in the Haynes 230 plot correspond to the results of the
simulation. (c),(d) The first PCA component as a function of the
global strain, colors as in panels (a),(b). A clear transition from
a low to a high value can be seen around a point corresponding
to the yielding of the sample. The purple rectangles correspond to
the simulation. (e),(f) The second PCA component as a function of
the global strain, colors as in previous panels. A peak is observed
for each curve, around a point corresponding to the yielding of the
sample. The purple rectangles correspond to the simulation.
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FIG. 5. (a) The strain rate ε̇ normalized by the strain rate mini-
mum min ε̇ averaged over all paper creep experiments as a function
of the normalized time before failure (tc − t )/tc. Note that the time
in this plot goes from right to left. Initially the strain rate decreases
until it reaches the minimum at tmin and after that it increases as a
power law toward sample failure at tc. (b) The first PCA component
as a function of the normalized time before failure for five samples. A
clear transition from a low to a high value can be seen for each sample
around a point corresponding to the onset of strain rate increase (so
the onset of tertiary creep). (c) The second PCA component as a
function of the normalized time before failure [colors as in panel (b)].
A peak is observed for each sample around a point corresponding to
the transition observed in the first PCA component.

The model [40,42] utilizes the phenomenological crystal
plasticity theory, capturing slip-based macroscale plasticity,
with standard constitutive laws for metals [41]. The model
captures in a self-consistent manner the basic physical mech-
anisms of crystal plasticity, as they take place in most metals,
and it captures finite deformations in a cubic grid [8]. The
model is solved by using an FFT-based spectral method [40].
The plastic deformation tensor evolves as

Ḟp = LpFp, (6)

where Lp = ∑
α γ̇ αsα ⊗ nα , with s and n unit vectors on slip

direction and slip plane normal, respectively, while α is the
slip system index. Total deformation translates in elastic and
plastic ones through F = F eF p. The slip rate γ̇ α is given by
[41]

γ̇α = γ̇0

∣∣∣∣τ
α

gα

∣∣∣∣
n

sgn(τα ), (7)

where γ̇0 is the reference shear rate, τα = S · (sα ⊗ nα ) is the
resolved shear stress at a slip resistance gα , with S = [C]E ε

being the second Piola-Kirchhoff stress tensor, n is the inverse
of the strain rate sensitivity exponent m = 1/n, and gα is the

slip resistance for a slip system α. Hardening is provided by

ġα =
12∑

β=1

hαβ |γ̇ β |, (8)

where hαβ is the hardening matrix, which captures the mi-
cromechanical interactions between different slip systems,
and the shear resistances asymptotically evolve toward satu-
ration. For more details on the model, please see Refs. [8,40–
42].

III. RESULTS

A. Microstructural characterization

The IPF Z maps [Figs. 2(a) and 2(b)] of the Haynes 230 and
Hastelloy X samples show an isotropic grain structure with an
average grain area of 31.29 and 16.8 μm2, respectively. The
twinning present in the maps is related to the material pro-
cessing. The samples were cut from cold-rolled and annealed
plates, and this process gives rise to deformation twins.

The grain orientation maps and SEM images [Figs. 3(a)
and 3(b)] reveal the presence of precipitates with strongly
developed topography structures standing out of the ma-
trix surface prepared by electrochemical polishing, both for
Hastelloy X and Haynes 230 samples. In the SEM images,
a channeling contrast between the grains of specific orien-
tations along the zone axis can also be observed. On the
basis of comparative analysis performed by SEM, EBSD,
and EDS techniques (Figs. 2 and 3), the precipitates have
been identified as inclusions of nonmetallic phases responsi-
ble for misindexing of the EBSD patterns in specific areas,
represented in white in the EBSD orientation maps. Careful
analysis of the EDS data allowed us to identify the precip-
itates as tungsten carbides and tungsten oxides in the case
of the Haynes 230 sample [Figs. 3(c), 3(e), and 3(g)], and
molybdenum carbides and chromium carbides in the case of
the Hastelloy X sample [Figs. 3(d), 3(f), and 3(h)]. It should
be kept in mind that due to the inhomogeneity in the com-
position of the samples and the accuracy of the quantitative
EDS analysis in general, the values of atomic concentrations
of individual elements presented in EDS elemental maps must
be treated as approximate (with a high level of uncertainty).

B. Detection of yielding

The measured stress-strain response [seen in Figs. 4(a) and
4(b)] has been used to determine the yield strain for each metal
sample. This is done by finding the maximum of the second
derivative of stress with respect to strain [Eq. (1)], which can
then be compared with the results obtained using the PCA
method. The Haynes 230 samples can be seen to yield at
εy = 0.14 ± 0.03%, which corresponds to a yield stress of
σy = 249 ± 44 MPa and an elastic modulus of E = 180 ±
13 GPa. For the Hastelloy X samples, these numbers are εy =
0.16 ± 0.01%, σy = 254 ± 8 MPa, and E = 156 ± 2 GPa.

The simulated stress-strain curve can also be seen in
Fig. 1(a). It roughly matches the experimentally observed
behavior with an elastic modulus of 200 GPa, but with a much
sharper yield point, yielding at 0.20% strain. This increased
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FIG. 6. (a) The location of the peak in the second PCA compo-
nent εPCA

y [Eq. (9)] in the metal alloy experiments plotted against
the yield strain εy determined from the stress-strain curves [Eq. (1)];
colors as in Fig. 4. The black line corresponds to the case εPCA

y = εy

and the dashed line has a constant offset of 0.02%. (b) The location
of the peak in the second PCA component tPCA

min [Eq. (10)] in the creep
experiments plotted against the time of the strain rate minimum tmin,
colors as in Fig. 5. The black line corresponds to the case tPCA

min = tmin

and the cross marker to the average off all the experiments.

curvature around yielding also increases the yield stress to
408 MPa.

The PCA method takes as an input a set of strain fields
at different stages of loading, performs principal component
analysis, and gives out two principal components, which we
denote here by PCA1 and PCA2. Plotting these components as
a function of strain [see Figs. 4(c), 4(d), 4(e), and 4(f)] shows
that the first component strongly increases around yielding
and after that stays constant, and the second component has
a clear peak around yielding. For clarity of presentation, the
extreme values of the PCA components have been normalized
here to positive and negative unity.

These observations on the locations of the peaks in the
second PCA component motivate the following definition [8]
for the PCA-based prediction of yielding. We define the yield
strain prediction as the position of the peak

εPCA
y = arg maxPCA2, (9)

and this clearly is close to the yield strain defined from the
stress-strain curves using Eq. (1).

C. Detection of creep failure onset

For the paper creep experiments, it is most illustrative to
plot the strain rate (normalized by the strain rate minimum)
averaged over all experiments 〈ε̇/ min ε̇〉 as a function of
(normalized) time before failure (tc − t )/tc, as can be seen in
Fig. 5(a). Initially the strain rate decreases over time and a
minimum is seen on average at t = 0.83 × tc or (tc − t )/tc =
0.17, after which the strain rate increases in a power-law
fashion towards the failure of the sample.

Doing the exact same procedure as previously for the
strain fields from the paper creep experiments again yields
two principal components. Plotting them as a function of the
(normalized) time before failure [see Figs. 6(b) and 6(c)], one
can see that similarly to the previous case, the first component
increases from a low constant value to a high constant value at
a point that seems to correspond to the onset of tertiary creep

(so around the strain rate minimum). Again, similarly to the
yielding case, the second component has a clear peak around
the same point.

Similarly to the yielding case, we take the peak of the
second PCA component to correspond to the onset of tertiary
creep (which would correspond to the time of the strain rate
minimum tmin). This then naturally gives the definition

tPCA
min = arg maxPCA2 (10)

analogous to the definition of Eq. (9).

D. Detection accuracy

We can compare the yield strains obtained from the stress-
strain curves [using Eq. (1)] and the ones obtained using the
strain fields from DIC, the PCA method, and Eq. (9). Indeed,
as one can see from Fig. 6(a), these values match very well.
The PCA predicted yield strains are slightly larger than the
ones measured from the stress-strain curve, as previously seen
in simulations [8]. As can be seen in the figure, a line offset by
0.02% fits the data very well. The simulation done for Haynes
230 also matches these results despite the higher yield strain
and differing curvature around the yield point.

Similarly for the creep case, we plot the time of the strain
rate minimum determined from the strain rate curve tmin ver-
sus the value obtained from Eq. (10) [see Fig. 6(b)], and we
see that they correspond to roughly equal times. There is more
scatter on the values obtained using the PCA method, but
the average is located on the line tPCA

min = tmin (black line) and
agrees with the Monkman-Grant relation tmin/tc = 0.83.

One must keep in mind that the Monkman-Grant relation is
indeed just a statistical one and additionally the determination
of the minimum of a noisy strain rate signal is prone to
errors. Instead, the PCA method directly detects the point of
maximum fluctuations from the DIC strain fields.

E. Correlation between the PCA components
and mechanical properties

The inference of the yield point and tertiary creep onset are
clearly just the tip of the iceberg in the context of extracting
material properties from DIC data. As we show in Fig. 7, there
seems to be rich information in the PCA behavior that can be
associated to a wealth of material properties. As an indication,
at this stage we point out that the maximum of the first PCA
component (when not normalized to unity) in the study of
tension in Ni-based alloys appears to be proportional to the
sample’s elastic modulus [cf. Fig. 7(a)]. In addition, the width
of the peak [measured by the full width at half-maximum
(FWHM) value taken from the middle of the maximum and
minimum values] of the second component is also propor-
tional to the sample’s elastic modulus [cf. Fig. 7(b)]. Then, in
the tertiary creep onset investigation, both the minimum and
maximum of the first principal component projection (c),(d),
as well as their mutual difference, (e), are all proportional
to the critical ration tPCA

min /tc, and finally the maximum of the
first PCA component projection is proportional to the sample
lifetime tc. While these findings are promising, further work,
beyond the scope of the current investigation, needs to be
pursued to associate these findings with theoretical modeling.

103601-6



DETECTION OF THE ONSET OF YIELDING AND CREEP … PHYSICAL REVIEW MATERIALS 6, 103601 (2022)

FIG. 7. The colors and markers for panels (a),(b) as in Figs. 4 and
6, and colors for panels (c)–(f) as in Figs. 5 and 6. (a) The maximum
value of PCA1 component plotted against the elastic modulus of the
metal samples. (b) The FWHM value of the peak of the second PCA1

component plotted against the elastic modulus of the metal samples.
(c) The minimum value of the first PCA1 component plotted against
the location of the peak in PCA2 in the creep tests. (d) The maximum
value of PCA1 plotted against the location of the peak in PCA2 in
the creep tests. (e) The range of values of PCA2 plotted against the
location of the peak in PCA2 in the creep tests. (f) The maximum
value of PCA1 plotted against the sample lifetime in the creep tests.

IV. CONCLUSIONS

The results presented here show that this method is effec-
tive in determining the yielding of different materials from
strain fields obtained through DIC. The behavior was also
verified for a simulation done using a crystal plasticity model.
The key features exploited in this detection method are the
fluctuations in the local strain fields.

The transition is seen in the PCA components, which
characterize the spatial fluctuations. Around the transition
point, the first component evolves from a low value, which

we take to correspond to the elastic state, to a high value,
which represents the plasticity-dominated state. The second
component peaks at the transition point, around the maximal
rate of change in the first component.

The yield points we determined from the stress-strain
curves differ between materials as well as between samples, so
using a constant offset yield point (such as 0.2% engineering
strain) would miss a lot about the details of yielding. In our
case, using the criterion of 0.2% strain would overestimate
the yield strain and therefore also the yield stress. The point
of maximal fluctuations determined by our detection method
correlates with the point of maximal curvature of the stress-
strain curve, although the fluctuations seem to be maximized
slightly (around 0.02%) later. The advantage of our method is
having a uniquely defined peak instead of constant thresholds
or fixed points.

Moreover, we found that despite the differences in the
deformation mechanisms, the same method can be used to
detect the onset of tertiary creep in static loading, i.e., the start
of acceleration towards failure. The detected point correlates
with the time of the strain rate minimum determined from
the global strain rate signal and with the statistical Monkman-
Grant relation for the location of the minimum, although the
scatter of detected points is fairly large. This shows that the
spatial fluctuations are a good universal indicator of plas-
ticity and can be exploited in systems with vastly different
microstructures.

This opens up many practical applications for the method,
as it can be used outside of controlled tensile tests. DIC anal-
ysis can be applied to any system that can be reliably imaged
at different points in time, and the PCA method can be used to
study the system under, for example, static loading conditions.
We note that no particularly great image resolution is required.
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