
      

 

 

 

 

This work was carried out in whole or in part within the framework of 

the NOMATEN Center of Excellence, supported from the European 

Union Horizon 2020 research and innovation programme (Grant 

Agreement No. 857470) and from the European Regional 

Development Fund via the Foundation for 

Polish Science International Research Agenda PLUS 

programme (Grant No. MAB PLUS/2018/8). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Citation: Kalinowska, M.; Gryko, K.;
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Abstract: Complexes of chlorogenic acid (5-CQA) with copper(II) and iron(III) were synthesized
in a solid state and examined by means of FT-IR, thermogravimetric, and elemental analyses. The
molar stoichiometric ratios of metal:ligand for the solid forms of the complexes were established as
Cu(II):L = 1:2 and Fe(III):L = 2:3 (L: 5-CQA), with the possible coordination through the carboxylate
group and the hydroxyl group from the catechol moiety. In an aqueous solution at pH = 7.4, the
composition of the complexes was Cu(II):L = 1:1, and Fe(III):L = 1:1 and 1:2. The Cu(II) and Fe(III)
complexes with 5-CQA showed lower antioxidant properties, as estimated by the spectrophotometric
methods with DPPH•, ABTS•+, and HO• radicals, than the ligand alone, whereas in the lipid
peroxidation inhibition assay, the metal complexes revealed a higher antioxidant activity than 5-CQA.
Cu(II) 5-CQA showed the highest pro-oxidant activity in the Trolox oxidation assays compared to the
other studied compounds. The lipophilic parameters of the compounds were estimated using the
HPLC method. 5-CQA and its complexes with Fe(III) and Cu(II) were not toxic to HaCaT cells in a
tested concentration range of 0.15–1000 nM after a 24 h incubation time.

Keywords: phenolic compounds; metal complexes; chlorogenic acid; caffeoylquinic acid; antioxi-
dant activity

1. Introduction

In recent years, the interest in antioxidant compounds of natural origin has been
constantly growing. A noteworthy group of chemical compounds in this area are plant
phenolic acids [1]. Chlorogenic acids have recently turned out to be some of the more
available and active phenolic compounds because of their antioxidant, anti-inflammatory,
and anticancer properties [2]. Chlorogenic acids (caffeoylquinic acids, CQAs) are esters of
one or more molecules of cinnamic acid (or its derivatives, including caffeic, ferulic and
p-coumaric acids) and quinic acid, which belong to the hydroxycinnamic acid group [1].
Among all the isomers found in plants, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid
(4-CQA), and 5-caffeoylquinic acid (5-CQA, commonly called chlorogenic acid) stand out
as the main ones (the structures of CQAs have been shown in previous publications) [3–5].
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1.1. Physicochemical Properties

The compounds that belong to the family of chlorogenic acids exhibit very different
physicochemical properties, depending on the identity, number, and position of the acyl
residues esterified with quinic acid, as well as the functional groups present on the aromatic
group of the acyl residues [3]. CQAs are soluble in water, but the polarity of CQAs
consequently decreases with the degree of esterification, i.e., monoCQAs > diCQAs >
triCQAs > tetraCQAs. The less-polar CQAs are soluble in lower alcohols or alcohol–water
mixtures. They are insoluble in benzene, chloroform, and petroleum ether. The polar nature
of CQA makes it relatively insoluble in the lipid matrix. Furthermore, its polyphenolic
structure leads to its instability and poor penetration across the lipophilic membrane barrier,
limiting its absolute bioavailability in the human organism [6]. CQAs are highly susceptible
to the effects of temperature. As temperature increases, they undergo intramolecular
isomerization, transesterification, and degradation more easily. CQAs are photosensitive
and undergo trans–cis isomerization upon exposure to ultraviolet or visible light [3].

It has been demonstrated that 5-CQA not only isomerizes to 3-O-caffeoylquinic acid
and 4-O-caffeoylquinic acid, but also undergoes other transformations such as esterification
and reactions with water, i.e., hydrolysis and/or the addition of a water molecule to the
double bond. These processes occur not only in CQA solutions, but also during their
isolation from plant materials and can lead to extracts with a lower content of biologically
active phenolic compounds [3].

1.2. Biological Properties

Chlorogenic acids exhibit a wide range of health-promoting properties (Figure 1),
which makes them an attractive food additive or drug. Chlorogenic acids exhibit an-
tioxidant [4,7–10], anti-inflammatory [2,4,7], antibacterial [2,4,7,8,11,12], antiviral [7,13],
anticancer [8,9,14,15], neuroprotective [3,4,16], and antidiabetic [14,17] effects, as well as
positive effects against gastrointestinal diseases [2,3,18,19]. In addition, they can increase the
number of white blood cells, lower blood pressure, and stimulate the central nervous system [16].

In vitro and in vivo data indicate that 5-CQA has antioxidant activity and can alleviate
oxidative stress in various disease models [2]. According to their structure, phenols can
eliminate radicals directly, through a peroxidase reaction or by forming chelates with metal
ions, thus preventing Fenton-type reactions [20]. Despite their significant antioxidant
properties, CQAs are also characterized by pro-oxidant properties, which depend on
their concentration, the occurrence of transition metal ions, and environmental conditions
(presence of oxygen molecules, high pH value) [7,19–22]. Moreover, the mechanism of the
pro-oxidant action of CQAs can be based on the ability to produce reactive oxygen species
(ROS), i.e., hydrogen peroxide H2O2, superoxide radicals ROO•−, and hydroxyl radicals
HO•− formed in the Fenton reaction during the reduction of Fe(III) to Fe(II) [23]. The
excessiveness of ROS in an organism can contribute to irreversible damage to the proteins,
lipids, and nucleic acids present in the cells [24].

In addition, CQAs exhibit broad-spectrum activity against Gram-positive and Gram-
negative bacteria as well as fungi and yeasts [5]. 5-CQA shows activity against Stenotrophomonas
maltophilia, Candida albicans (MIC = 80 µg/mL) [5,12], and Staphylococcus aureus (MIC =
500 µg/mL) [5,13,25].
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Figure 1. Biological properties of chlorogenic acids (CQAs) [2,4,5,11,12–19,25–27].  
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1.3. Bioavailability and Metabolism

The pharmacokinetics of CQAs have been studied. In an experimental model involv-
ing humans and animals, CQAs and their metabolites were noted in the blood. One third of
ingested CQAs in beverages and food are absorbed in the small intestine, which can be mea-
sured by high-performance liquid chromatography as 5-CQA, 4-CQA, and 3-CQA present
in the plasma. The remaining two-thirds enters the large intestine, where the phenolic acid
is further metabolized by the gastrointestinal microflora and then absorbed [26].

Chlorogenic acids (acyl-quinic acids), as with other polyphenols, show low bioavail-
ability due to several factors: interactions with the food matrix, and metabolic processes in
the liver (phase I and II metabolism), intestines, and microflora. On the other hand, the
biological activity of phenolic compounds may be mediated by their metabolites, which
are produced in vivo, and recent studies have confirmed that these molecules may have
antioxidant and anti-inflammatory properties. For example, unabsorbed in the small in-
testine, dietary 5-CQAs are hydrolyzed into caffeic and quinic acid and both are then
metabolized by the colonic microflora to a series of lower-molecular-weight metabolites
such as ferulic acid, isoferulic acid, p-coumaric acid, and gallic acid, which are mainly
absorbed in the colon. The remaining metabolites enter the bloodstream and are absorbed
or further metabolized (e.g., to vanillic or protocatechuic acid) in the liver [28,29].

Various ways to increase the bioavailability of CQAs have been investigated, including
metal complexation, nanoformulation, and the synthesis of sulfonate derivatives. Zhang
et al. studied the interactions of chlorogenic acid with whey proteins. CGA bound to three
whey proteins, β-Lg, α-La, and BSA, mainly through hydrophobic force. The study was de-
signed to provide information for further studies of milk proteins with polyphenols and the
fabrication of whey protein-based carriers to improve the bioavailability of polyphenols [1].

1.4. Sources of Chlorogenic Acid

Chlorogenic acid is one of the most widely occurring polyphenols found in plants,
resulting in its presence in the diet. It is present in many food products, e.g., apples,
stone fruits, berries, cruciferous vegetables, celery, and potatoes [30–37] (Tables S1 and
S2). However, the content of chlorogenic acid depends not only on the part of the plant,
but also on its maturity and the storage conditions. Additionally, its high content can be
found in processed beverages, most often in green and black tea, juices, wines, yerba mate,
and coffee [4]. One of the richest dietary sources of CQA are coffee beans. The content of
chlorogenic acid in green coffee beans is highly determined by their type; it may range
from 6 to 12% of the coffee bean dry mass [4]. The content of this compound for many fruits
and vegetables depends on their variety, the cultivation method, exposure to stresses, and
storage conditions, which is very evident for apples (12–31 mg/100 mL of apple juice) [23].
However, irrespective of variety, 5-CQA is the major constituent [3].

1.5. Chlorogenic Acid–Metal Complexes

Phenolic compounds play a significant role in binding toxic metals in the environment [15].
CQAs have an important function in plant tolerance to toxic metals, as well as in preventing
and reducing biotic and abiotic oxidative stress. The mechanism involves: (a) the secretion
of chelating agents, e.g., by roots, to prevent metal uptake or (b) the production of chelating
agents that bind metals in the cell wall, symplast, or vacuole [38].

The ability of CQAs to form complexes with selected metal ions and the effect of
complexation on changing their properties (including antioxidant) have been studied in
recent years (Figure 2). Several publications have described the formation of complexes
of CQAs with various metal ions in aqueous solutions, such as Al(III) [39], Fe(III) [40,41],
Mg(II) [13], Cu(II) [42,43], or Na(I) [11]. Moreover, the ability to form CQA complexes with
Pb(II) and Cu(II) and the lack of this ability for Cd(II) and Zn(II) have been demonstrated [7].
The molecular complexation of this compound with β-cyclodextrin, caffeine, and proteins
has been reported to design more advanced and controlled carriers for drugs and food
ingredients [15].
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Complexation with metal ions can alter the antioxidant potential of chlorogenic acid.
Alkali metal salts [20] and Fe(II) [40], Cu(II) [43], Ce(IV), Mg(II) [13], and Zn(II) [7] com-
plexes of 5-CQAs showed higher antioxidant activity than the ligand itself. Kalinowska
et al. [7] showed that Zn(II) 5-CQA is a better scavenger of ABTS•+ cationic and DPPH•

radicals and a better reductor of Fe(III) and Cu(II) ions compared to 5-CQA alone or even
natural (L-ascorbic acid, EC50 = 10.32 ± 0.98 µM) and synthetic (butylated hydroxyanisol
BHA, butylated hydroxytoluene BHT) antioxidants [7]. Chlorogenic acid can interact with
Fe(III) to form complexes that interact with ferritin via hydrogen bonds, which promotes
the rate of oxidative ion deposition and ion release from ferritin and reduces Fe(III)- and
Fe(II)-induced ferritin polymerization [27]. It is important to note that antioxidants can
also act as pro-oxidants depending on their concentration or the presence of certain metal
cations; moreover, the stabilization of phenoxyl radicals by metal cations results in the
prolongation of their lifetime [20,43]. It was shown that metals such as Al(III), Zn(II), Cd(II),
Mg(II), and Ca(II) can increase the pro-oxidant activity of chlorogenic acid due to their
stabilizing effect on the phenoxyl radical [43].

Therefore, in the this paper, the Fe(III) and Cu(II) complexes with 5-CQA were syn-
thesized in a solid state and studied by means of FT-IR, thermogravimetric, and elemental
analyses. The composition of the complexes in solution was estimated by means of the spec-
trophotometric method. The antioxidant activity of the complexes was studied by means of
DPPH, ABTS, HO, lipid peroxidation inhibition, and pro-oxidant assays. The lipophilicity
of the compounds was estimated by means of the HPLC method. The cytotoxic activity of
Fe(III) and Cu(II) 5-CQA as well as 5-CQA toward the HaCaT cell line was studied.

2. Materials and Methods

Chlorogenic acid, NaOH, CuCl2·2H2O, FeCl3·6H2O, DPPH (2,2-diphenyl-1-picrylhydrazyl),
ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), potas-
sium persulfate, FeCl2·4H2O, Trolox, H2O2, horseradish peroxidase, and phosphate buffer
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(pH = 7) were purchased from Sigma-Aldrich and used without purification. Methanol
and hydrochloric acid were purchased from Chempur (Karlsruhe, Germany).

2.1. Synthesis

The chlorogenates were prepared by mixing the appropriately weighed mass of chloro-
genic acid (about 0.1 g weighed to 4 decimal places) with an aqueous solution of NaOH
(C = 0.1 M) in a stoichiometric molar ratio of 1:1 at room temperature. Then, the aqueous
solution of metal chloride (C = 0.5 M) was added to the mixture in order to obtain a molar
ratio for the ligand:metal cation of 2:1 for the Cu(II) complex and 3:1 for the Fe(III) complex.
Brown (Cu 5-CQA) and dark brown (Fe 5-CQA) precipitates occurred immediately. They
were filtered from the solution and washed with deionized water. The precipitates were
air-dried at room temperature over 48 h. The yield of the reaction was 64% and 76% in the
case of Cu 5-CQA and Fe 5-CQA, respectively.

2.2. Thermal Analysis (TG-DCS) in Air Atmosphere and Elemental Study

The thermal behavior of the iron(III) and copper(II) chlorogenates was investigated
using thermogravimetry (TG) coupled with differential scanning calorimetry (DSC). The
TG-DSC measurements were conducted on a SETSYS 16/18 (Setaram, Caluire, France)
thermal analyzer with dynamic air flow at a rate of 0.75 dm3/h. The tested samples
weighing 8.149 mg and 8.770 mg were placed in alumina crucibles and heated from a
temperature of 30 ◦C to 750 ◦C at a constant heating rate of 10 ◦C/min. The elemental
analyses for the mass percentages of carbon and hydrogen were performed with Perkin–
Elmer 240 equipment (PerkinElmer, Waltham, MA, USA).

2.3. Spectrophotometric Determination of Cu(II) and Fe(III) 5-CQA Composition in Solution
Using the Spectrophotometric Method

To determine the metal ion:ligand molar ratio in an aqueous solution of Cu(II) and
Fe(III) 5-CQA, the spectrophotometric mole-ratio method was applied. The spectra in the
range of 200–550 nm were recorded for solutions with a constant mole number for 5-CQA
and a varied amount of Cu(II) or Fe(III) ions. The concentration of 5-CQA was 0.1 mM,
while the concentration of FeCl3 and CuCl2 changed from 0 to 0.15 mM. All solutions were
prepared in tris-HCl buffer (pH = 7.4; C = 50 mM).

2.4. IR and UV Studies

The IR spectra of 5-CQA and the Cu(II) 5-CQA and Fe(III) 5-CQA complexes in the
solid state were recorded with a Cary 630 FTIR Agilent Technologies spectrometer, using
the ATR technique, within the range of 400–4000 cm−1. The resolution was 1 cm−1. The
UV/Vis spectra of the studied compounds at a concentration of 0.01 mM were recorded
in the range of 200–550 nm in tris-HCl (pH = 7.4; C = 50 mM) using an Agilent Cary 5000
spectrophotometer (Agilent, Santa Clara, CA, USA).

2.5. Antioxidant Properties
2.5.1. DPPH•

The determination of the antiradical activity of the compounds was performed by
conducting a direct reaction of the DPPH• radical with the tested compounds in appropriate
concentrations, according to the method described in [45]. The absorbance of the samples
was measured after 1 h of incubation in the dark at the wavelength λ = 516 nm. The result
was the percentage of DPPH• radical inhibition (%I) calculated using the formula:

%I =
Ac −At

Ac
·100%

where Ac is the absorbance of the control sample and At is the absorbance of the test sample.
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The radical scavenging capacity was determined by the EC50 parameter, which is the
antioxidant concentration needed to reduce the initial radical concentration by 50%. All
measurements were taken for five replicates in three independent experiments.

2.5.2. HO•

The hydroxyl radical inhibition activity was measured according to [46]. In the test
sample, 0.3 mL of 8 mM FeSO4, 1 mL of 3 mM salicylic acid in ethanol, and 0.25 mL of
20 mM H2O2 were added to 1 mL of a 0.1 mM solution of the tested compounds. In the
control sample, deionized water was added instead of H2O2, and in the blank sample,
deionized water was added instead of the tested compound solution. The samples were
vortexed and incubated for 30 min at 37 ◦C. After the incubation, 0.5 mL of deionized water
was added to each sample. The samples were vortexed and the absorbance was measured
immediately at 510 nm, with reference to water. The level of hydroxyl radical inhibition
was calculated using the formula:

%I = (1−
(

A510
t −A510

c

A510
b

)
)·100%

where A510
t is the absorbance of the test sample, A510

c is the absorbance of the control sample,
and A510

b is the absorbance of the blank sample. All measurements were taken for five
replicates in three independent experiments.

2.5.3. ABTS•+

To obtain the ABTS•+ radical solution, ABTS (5.4 mM) and K2S2O8 (1.74 mM) were
mixed in a 1:1 volume ratio. The mixture was then incubated in the dark for 12 h. After
that, it was diluted with methanol so that, before the assay, it had an absorbance of about
0.8 at a wavelength of 734 nm [47]. A total of 1.5 mL of the diluted radical solution and
1.5 mL of 0.1 and 0.01 mM tested compound solutions were incubated in glass test tubes
for 7 min. Then, the absorbance was measured at λ = 734 nm against methanol. Control
samples, containing methanol instead of tested compounds solutions, were prepared in
parallel. The percent of inhibition was calculated, using the same formula as for the DPPH•

assay. All measurements were taken for five replicates in three independent experiments.

2.5.4. Lipid Peroxidation Inhibition

The lipid peroxidation inhibition capacity was tested in accordance with [48] with
some modifications, by preparing linoleic acid emulsions with the addition of antioxidant
at the 0.005 M concentration. From this mixture, incubated at 40 ◦C, 0.1 mL of the sample
was taken every 24 h for 5 days. Then, methanol and 30% ammonium rhodate solution
were added, and after 3 min, 0.02 M FeCl2 was added. The absorbance was measured
immediately at the wavelength λ = 500 nm. A control sample containing no antioxidant was
performed in parallel. The percent inhibition of linoleic acid peroxidation was calculated,
using the formula analogous to the DPPH• inhibition assay. All measurements were taken
for five replicates in three independent experiments.

2.5.5. Pro-Oxidant Activity

The pro-oxidant activity was measured in accordance with a method described in [49],
on the basis of the compounds’ ability of Trolox oxidation. The reaction mixture contained:
0.5 mL of 0.4 mM Trolox, 0.5 mL of 0.2 mM H2O2, 0.5 mL of horseradish peroxidase in
0.05 M phosphate buffer, 50 or 25 µL of 0.1 mM tested compounds, and 0.45 or 0.475 mL
of deionized water. The samples were mixed and the absorbance was measured every
10 min at λ = 272 nm. The pro-oxidant activity assay was performed in triplicate for three
independent series. Calculations were made according to the following formula:

%I =
Ac −At

Ac
·100%
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where Ac is the absorbance of the control sample and At is the absorbance of the test sample.
All measurements were taken for five replicates in three independent experiments.

The absorbance was measured using an Agilent Cary 5000 spectrophotometer (Agilent,
Santa Clara, CA, USA).

2.6. Cell Viability Assay

The influence of 5-CQA and its complexes with Fe(III) and Cu(II) on cell viability was
determined by the colorimetric MTS metabolic activity assay, as described previously [50].
HaCaT is a human skin keratinocyte cell line widely used in research due to its high
capacity for proliferation in vitro. It provides a reproducible model with long viability
in cell culture. These cells are an excellent model of skin cells and are often used in our
research alongside the Caco2, which is used as a model of the intestinal epithelial barrier.
Briefly, the HaCaT human immortalized keratinocyte cells (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA) were seeded in 96-well plates at a density of 2 × 103 cells/well in
a DMEM medium supplemented with 4.5 g/L of glucose, 2 mM L-glutamine, 10% fetal
bovine serum, streptomycin (100 µg/mL), and penicillin (100 IU/mL). All reagents for the
cell assays were from Biological Industries (Beth Haemek, Israel). After a 24 h incubation,
the growth medium was replaced with one containing increasing concentrations of the
tested compounds, between 0.15 and 1000 nM, and the cells were again incubated for 24 h
at 37 ◦C. This was followed by the addition of 20 µL of 5-(3-carboxymethoxyphenyl)-2-(4,5-
dimethylthiazoly)-3-(4-sulfophenyl)tetrazolium inner salt (CellTiter-96® AQueous-Non-
Radioactive, Promega, Mannheim, Germany). The absorbance in wells was measured at
490 nm using a micro-plate reader (Apollo 11LB913, Berthold, Bad Wildbad, Germany).
The cell viability was expressed as a percentage of normalization to cells grown in medium
only. All measurements were taken for three replicates in three independent experiments.

2.7. Lipophilicity Assay

The lipophilicity was determined using an RP-HPLC analysis using a Waters Alliance
2695 HPLC separation module (Milford, MA, USA) and a Waters 2996 photodiode array
detector (Milford, MA, USA) (λ = 254 nm). The experimental methodology and the method
of calculating the chromatographic lipophilicity parameter, logkw, is described in [20].

2.8. Statistical Analysis

To determine the statistical significance between the tested compounds, an analysis of
variance (ANOVA) followed by Tukey’s test was applied. The results from three indepen-
dent experiments were expressed as the mean ± standard deviation (SD) of the mean for
parametric data. Significance was considered when p ≤ 0.05. Statistica 13.0 was used.

3. Results and Discussion
3.1. Elemental Study and Thermal Analysis of the Solid-State Samples

Thermal behavior is an important parameter determining material properties. The TG–
DTG–DSC thermal profiles of the analyzed complexes are shown in Figure 3, whereas the
thermal data are gathered in Table 1. Additionally, the elemental analysis results obtained
for the Cu(II) and Fe(III) 5-CQAs complexes in the solid state are presented in Table 2.

The results showed that Cu(II) formed a complex with 5-CQA with a molar ratio of
1:2 (metal:ligand), while for Fe(III) 5-CQA, the molar ratio was 2:3 (metal:ligand). The
thermal decomposition of the complexes in question can be divided into two main stages.
The first stage was connected only with the endothermic dehydration process, whereas the
second one was related to the strong exothermic decomposition of anhydrous complexes.
The presence of a weak endothermic peak seen on the DSC curves at 88 and 91 ◦C for the
Cu(II) and Fe(III) complexes, respectively, confirmed the hydrated nature of both analyzed
materials. The identified mass loss between 30 ◦C and 150 ◦C for Cu 5-CQA (10.37%)
was almost the same as the calculated theoretical value (10.46%), which corresponded
to the separation of five water molecules. The Fe(III) complex also contained water as
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a solvent, but in a different amount than its predecessor. The experimental value of the
breakdown of the water molecules in the range of 30 to 140 ◦C (10.69%) was near the
theoretical one (10.95%), which confirmed the presence of eight solvent molecules in the
case of Fe(III) 5-CQA. The second key stage of the thermal decomposition was attributed
to the exothermic degradation of the organic 5-CQA ligand. The loss of the organic part
of the complexes occurred in several steps, as evidenced by the presence of a number of
exothermic jumps on the registered DSC curves. The Cu(II) complex showed a slightly
higher thermal stability than the Fe(III) compound (the thermal decomposition of the Cu(II)
complex started at 150 ◦C, whereas the Fe(III) complex began to decompose at 140 ◦C).
The final products of the thermal decomposition were the corresponding metal oxides:
brick-red Fe2O3 and black CuO.
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Table 1. Results of thermal decomposition of Cu(II) and Fe(III) 5-CQAs in air atmosphere.

Complex T1/◦C Tendo
Mass Loss/% Anhydrous

Form
T2/◦C Texo

Residue/% Residue

Found Calc. Found Calc.

Fe2(C16H17O9)3·8H2O 30–140 91 10.69 10.95 Fe2(C16H17O9)3 191 12.97 12.14 Fe2O3
140–405 221

344
370

Cu(C16H17O9)2·5H2O 30–150 88 10.37 10.46 Cu(C16H17O9)2 210 10.06 9.25 CuO
150–465 246

270
321

T1—temperature range of dehydration. T2—temperature range of degradation of anhydrous complexes to suitable
oxides. Tendo—peak top of endothermic effect. Texo—peak tops of exothermic effect.

Table 2. Elemental analysis of Cu(II) and Fe(III) complexes with chlorogenic acid.

Compound Formula
C% H% M% (Based on TG Profile)

Exp Calc Exp Calc Exp Calc

Cu(C16H17O9)2·5H2O 44.08 44.64 5.09 5.12 8.03 7.38

Fe2(C16H17O9)3·8H2O 43.16 43.78 4.69 5.09 9.07 8.49

3.2. FT-IR Studies of the Solid-State Samples

The FT-IR spectra of the Cu(II) and Fe(III) chlorogenates are shown in Figure 4, and
the assignment of the selected bands are gathered in Table S3. The assignment was based
on our previous publications [7,10] concerning chlorogenic acid and a zinc(II) complex
with chlorogenic acid.
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In the FT-IR spectra of the Cu(II) and Fe(III) complexes, the bands related to the
vibrations of the carboxylate anion appeared, compared to the absence of these bands in
the spectra of the ligand. The asymmetric νas(COO−) and symmetric νs(COO−) stretching
vibrations of the carboxylate anion occurred at 1594 and 1364 cm−1 in the spectra of Cu(II)
5-CQA and at 1614 and 1583 cm−1 and 1364 and 1356 cm−1 in the spectra of Fe(III) 5-CQA.
In the spectra of the metal complexes, there were no bands derived from the stretching
vibrations of the C=O carbonyl group, which was present in the spectrum of the acid at
1725 cm−1. Moreover, in the spectra of the complexes, the bands assigned to the bending
vibrations in-plane and out-of-plane of the carboxylate anion occurred at 813 cm−1 as
well as 615 and 612 cm−1 in the spectra of the Cu(II) and Fe(III) complexes, respectively.
Moreover, significant changes in the position of the band originating from the vibrations
of the catechol group were observed. In the spectrum of the acid, this band is located
at 1286 cm−1, while in the spectrum of the Cu(II) and Fe(III) complexes, it is located at
1261 and 1259 cm−1, respectively. The coordination through the carboxylate group probably
affected the whole structure of the ligand, including the catechol moiety. On the other hand,
these metal ions may form oligomeric structures with chlorogenic acid, similar to the zinc
complex [7]. Some of the other bands present in the FT-IR spectra of the 5-CQA complexes
were slightly shifted or disappeared compared with the spectra of 5-CQA. This means that
the metal ions affected the structure of the quinic and caffeic acid moieties.
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3.3. Determination of the Composition of Cu(II) and Fe(III) 5-CQAs in Solution

Figures 5 and 6 show changes in the absorbance of the solutions due to the formation
of Fe(III) and Cu(II) complexes with 5-CQA. In the UV/Vis spectrum of 5-CQA, four
bands were present at about 218, 232, 298, and 325 nm. These bands arose from the π→π*
transitions within the aromatic ring and the C=C double bond [10]. Due to the complex
formation, the bands at 232 and 325 nm disappeared and new bands at ~266 and ~363 nm
appeared. As the concentration of metal ions increased, the absorbance of the band at
218 nm increased and the absorbance of the band at 298 nm decreased. The isosbestic
point in the absorption spectrum resulted from the formation of an iron(III) complex
with chlorogenic acid in the solution. Figure 5 shows selected spectra of the successively
prepared solutions. In the spectrum of 5-CQA, four bands were present at 218, 232, 298,
and 325 nm. The bands at 298 and 218 nm were derived respectively from the n→π* and
π→π* electronic transitions within the C=O group, whereas the bands at 232 and 325 were
assigned to the π→π* transitions within the aromatic ring [10]. In the UV/Vis spectra of
the Fe(III) and Cu(II) complexes with 5-CQA, the bands at 232 and 325 nm were shifted
to ~265 and ~365 nm, which suggested that the metal complexation strongly affected the
electronic charge distribution in the catechol moiety. This could have been caused by the
participation of the –OH substituents from the aromatic ring in the metal ion coordination.
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The mole ratio is suitable for examining the composition of chlorogenic acid com-
plexes with iron(III) and copper(II). As a result of the conducted research, the presence
of complexes of chlorogenic acid with copper(II) in a molar ratio of 1:1 was found in an
aqueous solution (Figure 7a). In the case of the iron(III) complex with chlorogenic acid
(Figure 7b), we observed two pitches in the curve, indicating the coexistence of two forms
of the complex in solution, in a molar ratio of 1:1 and 1:2 (metal:ligand). According to
the literature, chlorogenic acid forms complexes with Cu(II), Mn(II), Zn(II), and Fe(III)
and the formula of these compounds was estimated as MLn, where L is the chlorogenic
acid and n = 1, 2, or 3 depending on the pH of the aqueous solution [51]. The authors
claimed that in the pH range of 5–6.5, there was an equilibrium between the two forms of
the complex (FeL/FeL2

3−), and when pH ≤ 5, the neutral form existed (FeL). The higher
complex, FeL3

6−, was formed at a pH of ~7.7. In the case of the Cu(II) complex with
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chlorogenic acid, at a pH = 5.7, the main form was CuL−, whereas at a higher pH, the
CuL2

4− complex occurred, which was the major species at pH = 7.3. Other studies revealed
that at a nearly neutral pH, Cu(II), Fe(II), and Mn(II) were complexed by 5-CQA with a
molar ratio of 1:1 [52]. According to Milic et al., for an aqueous solution at a pH of 7.5, the
estimated stoichiometry was 1:1 for Pb(II) 5-CQA and 1:1 and 1:2 for Cu(II) 5-CQA [53].
Taking into account the pH of the solution, it is necessary to consider the participation in the
coordination of the metal ion not only of the carboxylate group, but also of the hydroxylic
groups of the catechol group [41], as well as the additional possible reduction of iron(III)
ions to iron(II) and the formation of chlorogenic acid oxidation products [41]. Studies on
the complex of 5-CQA with vanadium(IV) have also confirmed the participation of catechol
groups in metal binding [18]. Therefore, the coordination of iron(III) and copper(II) ions
through the catechol moiety should also be considered. On the basis of Figures 5 and 6, the
stability constants (logK) for the complexes were calculated. For Cu(II) 5-CQA, the stability
constant was logK = 4.23, whereas for Fe(III) 5-CQA it was logK1 = 5.20 (metal:ligand 1:1)
and logK2 = 4.56 (metal:ligand 1:2).
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The difference in the composition of the complexes in solid form and in solution may
be explained by a slightly different pH of the reaction environment. In solution, the pH
was kept at 7.4 by the presence of the tris-HCl buffer, whereas during the synthesis of the
complexes in solid form, the solution of NaOH was added to 5-CQA to deprotonate the
acid and facilitate the formation of metal complexes (pH = ~8.2). The slightly higher pH
probably resulted in an increase in the amount of the deprotonated form of 5-CQA with the
participation of the –OH group at the para position of the catechol moiety. This might have
caused the formation of the complexes in solid form with different molar stoichiometry
(metal:ligand) compared to the complexes in solution. The stability constants for 5-CQA
were: pKa1 (COOH) = 3.35; logKa2 (OH in the para position) = 8.30; and pKa3 (OH in the
meta position) = 12.06 [51].

3.4. DPPH•, HO•, and ABTS•+ Antiradical Activity Assays

The antioxidant properties of chlorogenic acid and its complexes with Fe(III) and
Cu(II) ions were measured using a DPPH• assay and expressed as the concentration
of antioxidant required to inhibit 50% of the DPPH• radicals (IC50) [45]. The obtained
results are presented in Figure 8. The value of the IC50 parameter equaled 9.87 ± 0.05 µM
for 5-CQA, 11.03 ± 0.34 µM for Cu(II) 5-CQA, and 14.31 ± 0.08 µM for Fe(III) 5-CQA.
5-CQA was found to have the greatest ability to scavenge DPPH• radicals from the studied
compounds. Similar IC50 values to those obtained in the DPPH• assay for 5-CQA can be
found in the literature. For example, in a study by Zheng et al. [54], the IC50 for 5-CQA was
6.9 ± 0.1 µM [54]. In other studies, chlorogenic acid inhibited 50% of the DPPH• radicals at
a concentration of 7.23 ± 0.76 [7] and 7.39 ± 0.71 µM [20]. It can be concluded that 5-CQA
is an effective scavenger of DPPH• radicals.
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Figure 8. Antioxidant properties of 5-CQA, Cu(II) 5-CQA, and Fe(III) 5-CQA, expressed as the ability
to scavenge DPPH• radicals (IC50). Mean values from three independent experiments ± SDs are
shown. The same letter near the means indicates no significant difference (Tukey’s test, p < 0.05).

The ABTS•+ cation radical assay was carried out for two concentrations of the tested
compounds (0.05 and 0.005 mM). The results are shown in Figure 9. The antioxidant activity
increased with increasing compound concentration. All the studied compounds showed
a significant radical scavenging ability (ranging from 95.67 to 98.76%) at a concentration
of 0.05 mM. Larger differences in the activity of the tested compounds were observed at
a concentration of 0.005 mM. The methanol solution of 5-CQA showed a higher ABTS•+

cation radical scavenging activity (60.66 ± 0.002%) than its complexes with Cu(II) and
Fe(III) ions (37.94 ± 0.03% and 46.71 ± 0.01%, respectively).
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Figure 9. Antioxidant properties of 5-CQA, Cu(II) 5-CQA, and Fe(III) 5-CQA (0.05 and 0.005 mM)
expressed as the ability to scavenge ABTS•+ cation radicals (%I). Mean values from three independent
experiments ± SDs are shown. The same letter near the means indicates no significant difference
(Tukey’s test, p < 0.05).

The hydroxyl radical (HO•) is a highly reactive oxygen species that is produced by the
Fenton reaction [46]. The antioxidant activity of chlorogenic acid and the studied chloro-
genates was measured as the ability of these compounds to scavenge HO• radicals. The
obtained results are presented in Figure 10. In this study, 5-CQA and Cu(II) 5-CQA showed
a higher percentage of HO• radical inhibition (49.44 ± 6.05% and 47.19 ± 3.56%, respec-
tively) compared to Fe(III) chlorogenate (%I = 47.19 ± 3.56%). No significant differences
were observed between the results obtained for the individual compounds.
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the ability to scavenge HO• radicals (%I). Mean values from three independent experiments ± SDs
are shown. There were no significant statistical differences between particular compounds (Tukey’s
test, p < 0.05).

The obtained results indicated that the complexation of chlorogenic acid with Cu(II)
and Fe(III) ions did not significantly increase their antioxidant properties when measured
in DPPH•, HO•, and ABTS•+ antiradical activity assays (for a sample concentration of
0.05 mM). The greatest differences in the results were obtained in the ABTS•+ cation
radical assay for compounds at a concentration of 0.005 mM. In this assay, chlorogenic acid
(0.005 mM) showed significantly higher radical-scavenging properties (60.66%) compared
to its complexes with Fe(III) or Cu(II) ions (46.71 and 37.94%, respectively) (Figure 9).
These three tests were based on mixed HAT (hydrogen atom transfer) or SET (single
electron transfer) mechanisms of reaction, which more or less depend on the pH and the
type of solvent. In the HAT mechanism, the bond dissociation energy is an important
factor influencing the antioxidant effect, while in the SET reaction, such a parameter is the
ionization potential [55,56]. In an acidic pH, the antioxidant undergoes protonation, which
decreases the ionization potential and its ability to scavenge radicals, whereas in an alkaline
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pH, the proton dissociation increases, which facilitates the scavenging of the radicals [20]. The
stability constants for 5-CQA were the following: pKa1 = 3.35, pKa2 = 8.30, and pKa3 = 12.06 [50].
Under acidic conditions, the protonated form (AH3) and the monoanion (AH2¯) were the
main species, whereas in a neutral or basic pH, AH2¯ and the dianion AH2¯ were the
dominant forms of 5-CQA. Above pH~11.2, the trianionic form A3¯ was dominant. Taking
into account the experimental conditions in the DPPH, ABTS, and hydroxyl radical assays,
the three species AH3, AH2¯, and AH2¯ should be considered. In the pH range of 4–8,
the main form was AH2¯ (at pH > 7, the successive deprotonation starts, forming AH2¯),
which is responsible for the antioxidant properties of 5-CQA in the ABTS and DPPH assays,
although some authors have claimed that for the DPPH assay, the pH is irrelevant due to
the use of an organic solvent (methanol, in our case) [57]. In the hydroxyl radical assay,
the AH form should be predominant, which hinders the formation of complexes with
metals. Therefore, there were no distinct differences in the hydroxyl radical assay in the
antioxidant activity between 5-CQA and its metal complexes. In both the DPPH and ABTS
assays, the antioxidant properties of 5-CQA were higher because Fe(III) and Cu(II) were
coordinated through the carboxylate group, and at pH > 7, the deprotonation of the –OH
of the aromatic ring enabled the additional metal coordination through the catechol moiety.
The participation of the catechol moiety in the metal coordination decreased the radical
scavenging properties of the metal complexes compared to the ligand alone.

There are some other reports in the literature concerning the antiradical activity of
metal complexes with chlorogenic acid. In a study by Kalinowska et al. [7], a CQA/Zn(II)
complex inhibited the DPPH• and ABTS•+ radical scavenging activity more than chloro-
genic acid alone. The values of the IC50 parameter in the DPPH• assay were 5.45 and
7.23 µM for the CQA/Zn(II) and CQA, respectively. In the ABTS•+ assay, at a compound
concentration of 25 µM, CQA/Zn(II) inhibited ABTS•+ cation radicals by 97.65%, while
CQA inhibited the radicals by 89.53% [7]. Other work by Kalinowska et al. [20] showed
that Li, Na, K, Rb, and Cs ions increased the antioxidant activity of the chlorogenic acid
measured in DPPH• and FRAP assays compared to that of the ligand alone, but with one
exception. CQA/Li in a concentration of 5 µM showed slowly lower activity (106.92 µM
Fe2+) than CQA in the same concentration (114.22 µM Fe2+) [20].

Moreover, in the literature there are many other examples of the complexation of pheno-
lic compounds with the transition metals Fe(III) and Cu(II). Rutin, taxifolin, (-)-epicatechin,
and luteolin complexes with Fe(III) and Cu(II) ions were synthesized in the work of
Kostyuk et al. [58]. In their research, it was found that the obtained flavonoid complexes
(flavonoid:metal ion ratio of 1:1) showed a significantly higher scavenging power than
the free ligands. For example, in their tests, rutin alone inhibited the superoxide-driven
reduction of NBT by 50% at a concentration of 9.0 µM, while the IC50 parameters for its
complexes with Cu(II) and Fe(III) ions were 0.5 µM and 2.5 µM, respectively [58]. A study
conducted by Dowling et al. [59] showed that Cu(II) genistein and biochinin A complexes
(flavonoid:metal ion ratio of 2:1) exhibited greater antioxidant activity against DPPH• radi-
cals than free isoflavones, while the chelation of the same ligands with Fe(III) ions increased
their pro-oxidant activity against ligands [59]. It can be concluded that the chelation of
phenols does not always increase antioxidant ligand properties.

3.5. Inhibition of Linoleic Acid Peroxidation Assay

The inhibitory activity of linoleic acid peroxidation by 5-CQA, Cu(II) 5-CQA, and
Fe(III) 5-CQA was measured for 5 days. As shown in Figure 11, there were no significant
differences in the inhibitory activity between the studied compounds on the first and
second days of the experiment. An amount of 55.41 ± 2.40% inhibition by Fe(III) 5-CQA,
45.49 ± 12.50% inhibition by Cu(II) 5-CQA, and 17.38 ± 3.44% inhibition by 5-CQA were
observed on the third day of measurement. The greatest differences in the activity of the
compounds were observed on the fourth day of measurement, where the inhibition of
linoleic acid peroxidation for Fe(III) 5-CQA was 74.60 ± 1.24%; for Cu(II) 5-CQA, it was
59.09 ± 2.36%; and for 5-CQA, it was 23.74 ± 6.61%. On the fifth day of the experiment,
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Fe(III) 5-CQA and Cu(II) 5-CQA inhibited the peroxidation of linoleic acid by 75.22± 0.47%
and 64.87 ± 1.48%, respectively, while 5-CQA only inhibited it by 23.91 ± 4.20%. The
results of this assay indicated that the synthesized chlorogenic acid complexes inhibited the
peroxidation of linoleic acid more effectively than the ligand itself. This fact could be useful
for designing compounds that are capable of extending the shelf life of oleaginous food.
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Figure 11. Linoleic acid peroxidation inhibition assay of 5-CQA, Cu(II) 5-CQA, and Fe(III) 5-CQA
(0.001 M). Mean values from three independent experiments ± SDs are shown. The same letter near
the means indicates no significant difference (Tukey’s test, p < 0.05).

3.6. Pro-Oxidant Activity Assay

The pro-oxidant activity of chlorogenic acid and its Cu(II) and Fe(III) complexes were
measured for 60 min in two concentrations: 2.5 and 1.25 µM. As shown in Figure 12, the
Cu(II) chlorogenate showed the strongest pro-oxidant activity and the Fe(III) chlorogenate
had the lowest activity, while the chlorogenic acid itself had pro-oxidative power between
these complexes. The pro-oxidant activity increased with time, with the highest values
at 60 min in almost all cases. After 60 min, 5-CQA, Cu(II) 5-CQA, and Fe(III) 5-CQA at
1.25 and 2.5 µM concentrations increased the oxidation of Trolox by 108.46 ± 5.31% and
156.43 ± 3.58%; 52.23 ± 1.89% and 93.32 ± 13.99%; and 20.39 ± 0.81% and 38.81 ± 2.30%,
respectively. The pro-oxidant activity of Cu(II) 5-CQA and Fe(III) 5-CQA was higher than
that of the 5-CQA itself, which was also observed for the Zn 5-CQA complex in the work of
Kalinowska and others [7].

When subjected to certain conditions (e.g., high concentration, occurrence of metal
ions), some antioxidants can have pro-oxidant properties. One of the most well-known
examples would be ascorbic acid, which displays a high pro-oxidant activity at a higher
concentration. This is due to the overbalance of the reducing power over its antiradical
activity. Low or moderately concentrated pro-oxidants can be beneficial for the defense
system, but when they occur in excess, pro-oxidants cause oxidative imbalance [60]. It
was also confirmed that in an oxygen environment, the presence of Cu or Fe can lead to
the formation of reactive oxygen species [61]. Furthermore, this ability can be used in
cancer therapy for inducing cancer cell apoptosis, for example through hydrogen peroxide
generation [62].
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Figure 12. Pro-oxidation activity assay of 5-CQA, Cu(II) 5-CQA, and Fe(III) 5-CQA (2.5; 1.25 µM).
Mean values from three independent experiments ± SDs are shown. The same letter near the means
indicates no significant difference (Tukey’s test, p < 0.05).

3.7. Cell Viability Assay

The influence of 5-CQA and the Fe(III) 5-CQA and Cu(II) 5-CQA complexes on
the proliferation of HaCaT cells was investigated using an MTS assay (Figure 13). The
obtained results indicated that 5-CQA alone does not influence the HaCaT cell viability,
even in the wide concentration range of 0.15–1000 nM, and this result is comparable to
other data obtained for various cell lines [54,55]. The Fe(III) 5-CQA and Cu(II) 5-CQA
complexes were not toxic to cells in the tested concentration range either; however, at the
highest applied concentration of 1000 nM, they reduced cell viability to 91.4 ± 4.9% and
83.9 ± 5.1%, respectively, whereas CQA alone did not influence HaCaT cell viability at this
concentration (100.7 ± 4.5%). The one-way ANOVA of the viability of the HaCaT cells
as a function of compound concentration for 5-CQA, Fe(III) 5-CQA, and Cu(II) 5-CQA at
α = 0.05 revealed that there were no significant statistical differences in cell viability as
a function of drug concentration for 5-CQA or Fe(III) 5-CQA. A statistically significant
difference was found by ANOVA for the Cu(II) 5-CQA. A two-tailed unequal variance t-test
at each drug concentration versus the control revealed that the only statistically significant
difference was between the control and the highest concentration of the Cu(II) 5-CQA
series. The higher reduction in cell viability caused by Cu(II) 5-CQA compared to Fe(III)
5-CQA and 5-CQA may be explained by the higher pro-oxidant properties of Cu(II) 5-CQA
compared to the other studied compounds (Figure 12).
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3.8. Lipophilicity Assay

The chromatographic lipophilicity parameters were collected in Table 3. Different
stationary phases were selected because the mechanism of molecule separation involves
different type of interactions, i.e., hydrophobic van der Waals interactions in the case of C18
and C8 alkyl-modified silica stationary phases, π→π* interactions when the PHE phenyl-
modified silica phase is applied, or hydrogen bond formation between -CN groups (in the
case of the CN cyano-bonded silica phase) and HO- groups from separate molecules. On the
basis of the result, it may be concluded that the Cu(II) and Fe(III) 5-CQA complexes showed
significantly lower lipophilicity than the ligand alone. The compounds can be ordered
according to their decreasing lipophilicity as follows: 5-CQA→Cu(II) 5-CQA→Fe(III)
5-CQA (determined in the C18, CN, and PHE stationary phases). The differences in the
lipophilicity and solubility between 5-CQA and its Cu(II) and Fe(III) complexes may explain
their different cytotoxic and even antioxidant properties as well as membrane permeability.

Table 3. Lipophilicity parameters determined by chromatographic methods (the logarithm of the
retention factor, logkw) for the Cu(II) and Fe(III) chlorogenates and chlorogenic acid [20].

Compound
C18 C8 CN PHE

logkw

Cu(II) 5-CQA 0.45 0.04 1.28 0.80
Fe(III) 5-CQA 0.23 0.23 0.36 0.67

5-CQA [20] 3.88 1.11 2.09 1.45

4. Conclusions

The Cu(II) and Fe(III) complexes of chlorogenic acid (5-CQA) were synthesized and
studied using UV/Vis and FT-IR. The anti- and pro-oxidant properties of the obtained
complexes and 5-CQA were measured using various assays (DPPH•, HO•, ABTS•+, linoleic
acid peroxidation inhibition, and Trolox pro-oxidation). 5-CQA and the metal complexes
revealed a high antioxidant activity. The pH of the assays was an important factor determin-
ing the degree of ligand complexation by the copper and iron ions and the participation of
carboxylate groups and –OH substituents from the aromatic ring in metal ion coordination.
The coordination of Fe(III) and Cu(II) ions by the catechol moiety of 5-CQA decreased the
radical scavenging properties of the complexes compared to those of the ligand alone. On
the other hand, the Fe(III) and Cu(II) complexes with 5-CQA retained lipid peroxidation
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to a greater extent than 5-CQA. Special attention should be paid to Fe(III) 5-CQA, which
exhibited a lower pro-oxidant activity in the Trolox assay compared to Cu(III) 5-CQA and
5-CQA. Moreover, 5-CQA alone and its complexes with Fe(III) and Cu(II) cations were not
toxic to HaCaT cells in a tested concentration range of 0.15–1000 nM after a 24 h incubation
time. However, for the Fe(III) 5-CQA and Cu(II) 5-CQA compounds, a slight decrease in
cell viability was observed at the highest applied concentration. Further studies are needed
to explore this influence and its potential mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15196832/s1, Table S1: Sources of CQA with extraction and
determination methods; Table S2: Sources of different CQA isomers; Table S3: The wavenumbers,
intesities and assignment of selected bands from the FT-IR spectra of Cu(II) and Fe(III) 5-CQAs and
5-CQA acid [7]; the symbols denote: ν—stretching vibrations, δ—deforming in plane and oop—out
of plane bending vibrations; s—strong, m—medium, w—week, v—very, sh—on the slope.
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