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By introducing hierarchical patterns of load-parallel cuts into axially loaded brittle sheets, the resistance
to propagation of mode-I cracks is very significantly enhanced. We demonstrate this effect by simula-
tion of two-dimensional beam network models and experimentally by testing paper and polystyrene (PS)
sheets that are sliced with a laser cutter to induce load-perpendicular hierarchical cut patterns. Samples
endowed with nonhierarchical reference patterns of the same cut density and nonsliced sheets are consid-
ered for comparison. We demonstrate that hierarchical slicing can increase failure load, apparent fracture
toughness, and work of fracture of notched paper and PS sheets by factors between 2 and 10.
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I. INTRODUCTION

Materials with hierarchical microstructures consist of
microstructural elements, which have themselves internal
structure, forming patterns where similar (micro)structural
features are reproduced on multiple scales in a self-similar
manner. Such hierarchical microstructures are encountered
in past, present, and future technological systems—an
often cited real-world example being the three-level iron
girder skeleton of the Eiffel tower [1], a much more specu-
lative one being the five-level self-similar space elevator
cable made of carbon nanotubes that was suggested in
Ref. [2]. In particular, hierarchical microstructures are
ubiquitous in biomaterials [3]. An example is the hier-
archical modular organization of collagen, ranging from
molecules over microfibrils and fibers to hierarchical fiber
bundles, ensuring enhanced toughness of the hierarchical
structure over that of an assembly of isolated collagen
molecules [4]. Other examples include the hierarchical
structure of bone [5,6], the cellular structure of wood
[3], or the hierarchical lamellar microstructure of tortoise
shells [7].

Fracture mechanics of hierarchical materials was stud-
ied in a series of papers by Gao and co-workers
[8,9]. In these works it was demonstrated that hierarchical
microstructure can be considered as a method to achieve
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damage tolerance, i.e., to mitigate against catastrophic
propagation of a localized flaw driven by stress concen-
trations. The basic idea is that if we envisage fracture
within the framework of cohesive crack models, then the
crack tip is always preceded by a fracture process zone, the
extension of which depends on the elastic properties of the
material and the shape of the cohesive law. If the extension
of the process zone is larger than the characteristic dimen-
sion of the remaining intact cross section of the material,
then failure no longer occurs by crack propagation but by
homogeneous overloading of the intact part. This well-
known fact means that, in homogeneous materials, error
tolerance can be found only in small-scale samples. The
key point is now that in hierarchical materials, as we make
a transition to a higher hierarchical level, the cohesive zone
may increase in proportion, such that ideally error toler-
ance can be achieved on all scales. In the work of Gao et al.
[8,9], this aspect was investigated for two-phase compos-
ites where hard platelets are embedded, in a self-similar
manner, into a soft matrix. In the present study we take
the concept of flaw tolerance by structural hierarchy one
step further: we demonstrate that it is possible to achieve
flaw tolerance even in single-phase materials, by redesign-
ing the patterns of stress transmission through an educated
process of material removal.

Similar concepts have been studied in kirigami mate-
rials, which are superelastic sheet materials that have a
very large degree of tunability of mechanical response
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[10,11]. They can be used in wide variety of applications,
e.g., medical [12] and electrical applications [13,14] as
well as other nanoscale materials [15]. Machine-learning
approaches [16,17] have also been used in optimizing
their structure. However, the basic deformation mecha-
nisms of these materials are different from that in our
approach. Kirigami materials exhibit nonlinear elasticity
[18–20] through opening of the gaps in the material by
stretching and bending of the structure.

Lattice models are a common tool for studying the
failure behavior of quasibrittle materials with microstruc-
tural disorder (hence, fluctuating local strength), for an
overview see Ref. [21]. In particular, the failure behavior
of lattices endowed with a self-similar structural hierarchy
was investigated for two-dimensional (2D) fuse lattices
[22] and beam lattices [23], and compared with the behav-
ior of nonhierarchical reference structures. The investiga-
tions demonstrated the existence of two different failure
modes: while non hierarchical structures fail by nucleation
and subsequent propagation of a critical crack, hierarchical
structures fail by diffuse damage nucleation and coales-
cence. While these investigations considered the behavior
of structures without pre-existing cracks, it may be conjec-
tured that hierarchical structures of the same type might
efficiently mitigate against the effect of crack-tip stress
concentrations even when large macroscopic cracks are
present. Here we directly test this hypothesis, first by sim-
ulations of hierarchically structured 2D beam networks
containing pre-existing cracks of varying length and then
by experiments on quasi-two-dimensional materials, test-
ing notched sheets of paper and polystyrene (PS) endowed
with comparable hierarchical patterns.

II. RESULTS

A. Simulations

Simulations are carried out on 2D hierarchical beam net-
works with deterministic (DHBN) and stochastic (SHBN)
morphology. Nonhierarchical reference structures includ-
ing fully connected networks (FBN) and networks with
random gap patterns (RBN) are simulated for compari-
son. The method of network construction is detailed in
Appendix A, and Figs. 1(a) and 1(b) give illustrative exam-
ples of DHBN, SHBN, and RBN structures. The simulated
networks contain pre-existing cracks of varying length
0 ≤ a < L where L is the network cross section. In the
case of hierarchical structures, the location of the cracks is
shifted randomly relative to the hierarchical pattern, how-
ever, in all cases the “gaps” of the pattern are oriented
perpendicular to the initial crack.

The samples are loaded in tension by imposing, in the
crack-perpendicular direction, a global displacement that
is monotonically increased until failure occurs. Details of
the testing protocol are provided in Appendix A.

Failure of cracked nonhierarchical structures [Fig. 2(a),
left and Movie S1 within the Supplemental Material [24])
is found to follow a classical fracture mechanics scenario:
upon loading, stress concentrations develop at the crack
tips until the crack becomes critical, and failure then pro-
ceeds by crack propagation, which is sustained by the
release of elastic energy stored in the sample. In hierar-
chical structures [Fig. 2(a), right and Movie S1 within the
Supplemental Material [24]], on the other hand, crack-
tip stress concentrations are absent and failure therefore
requires a much higher overall stress level. Even then, the
existing crack either does not propagate at all or is rapidly
arrested, whence failure proceeds by nucleation and subse-
quent arrest of new cracks nucleated at other locations in
the sample. As a consequence, both peak stresses and post-
peak activity in hierarchical samples significantly exceed
those in the nonhierarchical reference structures, as seen
on the stress-strain curves in Fig. 2(b). The differences
are also reflected in the crack length dependence of the
peak stress supported by the samples. Here the findings on
nonhierarchical structures closely follow the predictions
of quasibrittle fracture mechanics. Thus, the peak load σp
supported by a sample decreases in approximately inverse
proportion with the square root of crack length,

σp = KIc√
π(a + a0)

f
(a

L

)
, (1)

where a0 is a process zone size [25] and the function
f (a/L) accounts for specimen size effects, see red data
points and red line in Fig. 2(c); the red line has been calcu-
lated from Eq. (1) with f (x) = (x/ tan x)1/2, x = πa/(2L)

as appropriate for a L-periodic array of cracks loaded in
parallel [26]. Equation (1) characterizes the size effect
of classical fracture mechanics, where strength decreases
approximately in inverse proportion with the square root
of crack length. In hierarchical samples, on the other hand,
we observe a linear decrease of the supported load, which
is simply proportional to the intact sample cross section,

σp = σp(a = 0)
(

1 − a
L

)
. (2)

This is the behavior expected for a bundle of parallel
unconnected fibers: if a “crack” cuts a fraction a/L of
the fibers, then the load that can be carried by the struc-
ture decreases by a factor (1 − a/L). However, bundles
of unconnected fibers are not a good solution for a load-
carrying structure [27] since they are prone to a different
type of size effect, which is of statistical origin, as the
unconnected fibers fail at their respective weakest cross
sections. This may lead to a very significant reduction
of overall strength, which is absent in our hierarchical
structures, as discussed in Appendix C.

Thus, hierarchical samples mitigate both against fracture
mechanical and statistical size effects. As a consequence,
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(a)

(b)

FIG. 1. Hierarchical patterning. (a) “Top-down construction” of a n = 4-level-HBN structure: we start with a solid plate represented
by a 2D FBN of size L; this is then divided by two load-parallel cuts into four lower-level modules—two groups of two modules
loaded in series, connected by a remaining, system spanning cross-link (CL) connector of length L; then each of the four modules is
again divided by two shorter cuts into four lower-level modules plus a module-spanning CL connector of length L/2, etc.; cuts are
marked in blue, the remaining CL connectors are colored red. (b) Five-level HBN structure together with randomly permutated SHBN
structure and reference RBN structure, illustrating the patterns of cuts and connectors for the different structures.

the load supported by hierarchical samples may very sig-
nificantly exceed that of their nonhierarchical counterparts
[blue data points and blue line in Fig. 2(c)]. The same
is true for the specific work of fracture (WOF) wF =
WF/[t(L − a)], defined as the mechanical work WF =
V

∫
σ(ε)dε needed to fully break the sample from its initial

configuration (V is the sample volume), divided by the ini-
tial area t(L − a) of the intact ligament where t is the sheet
thickness [Fig. 2(d)]: after an initial transient, the specific
WOF is independent of crack length for both hierarchical
and nonhierarchical samples, but for hierarchical samples,
the saturation level is about a factor of 5 higher.

To interpret this observation in more detail, we note that
the WOF wF = wF ,e + wF ,ne can be envisaged as a sum
of the work wF ,e needed to create the fracture surface,
e.g., by propagating a crack across the sample (so-called
essential work of fracture [28]) and the work wF ,ne dis-
sipated by plastic deformation or damage in the bulk of
the sample away from the fracture surface (nonessential
work of fracture). In the case of failure by crack prop-
agation, the essential work of fracture equals the critical
J integral, wF ,e = Jc [29], and for an elastic-brittle mate-
rial failing by crack propagation, wF ,e = Jc = Gc equals

the critical energy release rate. For such a material we can
thus directly relate the fracture toughness and the essen-
tial work of fracture via K2

Ic = EGc = EwF ,e where E is, in
case of plane-stress deformation as considered here, equal
to Young’s modulus of the material. Moreover, for such a
material a plot of the WOF versus crack length reaches,
after an initial transient related to the process zone size a0,
a plateau where the WOF is independent on crack length
a. This plateau value can then directly be related to the
essential WOF required for propagating the crack.

We illustrate this for the data from our simulations of
samples with precracked RBN patterns, which are well
described by Eq. (1). In this case, the fit of Eq. (1) to
the data [red line in Fig. 2(c)] yields a fracture toughness
KIc = 0.0594〈σB〉√L. Assuming brittle crack propagation,
this corresponds to an essential work of fracture wF ,e =
K2

Ic/E = 0.0035〈σB〉2L/E. We can compare this with the
plateau value of the specific work of fracture, which from
Fig. 2(d) is found to be wF ≈ 0.047〈σB〉2L/E. The com-
parison shows that in the plateau region, most of the work
of fracture in RFN structures corresponds to the essen-
tial WOF needed for brittle propagation of the pre-existing
crack. For the hierarchical structures, on the other hand,
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(a) (b)

(c) (d)

FIG. 2. Simulation results. Simulation results for hierarchical (DHBN, SHBN) and nonhierarchical (RBN, FBN) structures of size
L = 512; (a) internal stress patterns at the peak stress, initial crack of length a = 100 is marked in gray, the white line indicates the
fracture path, the system is loaded in tension in y direction; (b) representative stress-strain curves for different network types, crack
length a = 100, stresses and strains are given as multiples of the mean beam failure stress 〈σB〉 (see Appendix A) and failure strain
〈σB〉/E; (c) peak stress in units of 〈σB〉 as a function of crack length for DHBN and RBN samples, all data are averaged over ten
samples, the error bars indicate the corresponding standard deviation, red and blue lines represent fits according to Eqs. (1) and (2),
respectively; (d) specific work of fracture for the same set of samples; the data points and error bars in (c),(d) each represent the average
and standard deviation of 20 simulations.

the much higher WOF values must be attributed to diffuse
damage accumulation in the bulk of the system, and hence
to a strong increase of the nonessential WOF.

B. Experiments

Experiments are carried out on sheets made of paper
and of polystyrene, which are endowed with gap patterns
to create hierarchical subdivisions matching the DHBN
and SHBN beam network morphologies. Pristine sheets
and sheets with nonhierarchical gap patterns are tested for
comparison. Details of specimen preparation and testing
protocol are found in Appendix B.

Tensile tests on paper reveal a picture that closely
matches the results obtained in the simulations (Fig. 3).
This is already evident upon external inspection: hier-
archical samples exhibit a super-rough crack path that

closely resembles the findings in HBN simulations
[compare Fig. 2(a), right, and Fig. 3(a)]. As in the simu-
lations, the stress-strain curves of hierarchically patterned
paper sheets containing pre-existing cracks exhibit signifi-
cantly enhanced peak strength σp and post-peak activity as
compared to their nonhierarchical counterparts [Fig. 3(b)].
The dependency of failure stress on crack length again
matches the simulation results: while the data for pris-
tine and randomly patterned paper sheets follow the frac-
ture mechanics prediction [black data points and line in
Fig. 3(c)], hierarchically patterned samples exhibit a nearly
linear decrease of peak strength with crack length [blue
data points and line in Fig. 3(c)]. The peak strength of
the hierarchically patterned samples without crack (a = 0)
is comparable to that of randomly patterned or unpat-
terned samples, whereas in the presence of a crack,
the hierarchically patterned samples are always stronger.
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(a) (b)

(c) (d)

FIG. 3. Fracture experiments on paper sheets. The sample side length L corresponds to 154 mm. (a) Fractured unnotched sample
with SHBN-type hierarchical cut pattern, the blue line indicates the fracture surface; (b) stress-strain curves for DHBN- and RBN-type
patterned and unpatterned sheets, all with a side notch of length a = L/5 = 31 mm; (c) peak stress as a function of notch length for
DHBN- and RBN-patterned and unpatterned sheets, black and blue lines are fits according to Eqs. (1) and (2), respectively; inset:
apparent fracture toughness relating peak stress to notch length via Eq. (1); (d) specific work of fracture as a function of notch length
for the same set of samples as in (c); where error bars are given, the data points represent the average of two samples while the error
bars indicate the larger and smaller value.

For long cracks (a ≥ 0.5L) the strength increase due to
hierarchical patterning amounts to a factor of 4. We can
use classical fracture mechanics to relate the peak strength
(the stress required to induce supercritical crack propa-
gation) to the crack length a and fracture toughness KIc
via Eq. (1). Using for a plate with a side notch, the
relationship f (x) ≈ (1.12 − 0.23x + 10.56x2 − 21.74x3 +
30.42x4)−1 where x = a/L [26], we find for unpatterned
and random samples an approximately constant fracture
toughness KIc = 8.69 MPam1/2. In hierarchically patterned
samples, on the other hand, the factor KIc (here best
denoted as apparent fracture toughness since failure does
not proceed by propagation of the pre-existing crack) is not
constant but increases with crack length [inset in Fig. 3(c)].

A significant strengthening effect by hierarchical pat-
terning is also manifest if we consider the specific work

of fracture wF [Fig. 3(d)]. In the limit a → 0 this quan-
tity is comparable for hierarchical and nonhierarchical
samples. For nonhierarchical samples, wF first decreases
with increasing crack length and then stabilizes at a low
level. In hierarchical samples, on the other hand, wF first
increases with crack length, shows a peak, and then sta-
bilizes at a level that exceeds the typical WOF values
of the nonhierarchical samples by a factor of about 10.
We emphasize that this is not due to an increase in the
work required to increase the fracture surface (essential
work of fracture), as the original crack in fact does not
propagate. The enhanced WOF of hierarchical samples
rather represents the work expended to create damage
everywhere in the sample (nonessential work of frac-
ture), which ultimately leads to failure by damage coales-
cence.
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For precracked nonhierarchical samples, the WOF val-
ues range between 15 and 40 kJ/m2, although one cannot
clearly identify a plateau value from the wF versus a curve.
These values are of the same magnitude as the values of
the essential work of fracture computed from the relation-
ship wF,e ≈ K2

Ic/E. With Young’s moduli E = 4.85 GPa
for unpatterned and E = 3.06 GPa for randomly pat-
terned samples, this yields values of wF ,e = 15.5 kJ/m2 for
unpatterned and wF,e = 24.7 kJ/m2 for randomly patterned
samples. Thus, the overall picture emerging from our
experiments on paper samples matches well the simulation
results.

The observations on PS sheets demonstrate that hier-
archically patterned SHBN-type PS samples [Fig. 4(a),
right] exhibit a similar fracture surface morphology as
SHBN-patterned paper sheets [Fig. 3(a)] and simulations
[Fig. 2(a), right]. This morphology differs from the frac-
ture surface of RBN-type reference samples [Fig. 4(a),
left and Fig. 2(a), left]. The difference in fracture surface
morphology between hierarchically patterned sheets and
reference samples is associated with a significant differ-
ence in the shape of the stress-strain curves. Both unpat-
terned and randomly patterned sheets show almost ideally
brittle macroscopic behavior. This is in stark contrast
with the deformation behavior of hierarchically patterned
sheets, where we see extensive post-peak activity associ-
ated with crack arrest and the nucleation and propagation
of new cracks [Fig. 4(b)]. This increased post-peak activ-
ity results in a very significant enhancement of the work
of fracture [Fig. 4(d)]. The dependency of peak stress on
crack length in PS is well described by Eq. (1) for all
types of samples [full lines in Fig. 4(c)], indicating that the
peak stress is controlled by the length of the initial crack.
The corresponding fit values of the fracture toughness are
KIc = 7.12 MPam1/2 for random and hierarchical sam-
ples, and KIc = 5.34 MPam1/2 for unpatterned samples.
We can again use these values to estimate the essential
WOF, assuming brittle crack propagation. From the stress-
strain curves we deduce elastic moduli E ≈ 2.8 GPa for
random and E ≈ 2 GPa for unpatterned samples, which
gives estimates of wF ,e = K2

Ic/E = 18 kJ/m2 for random
and wF ,e = K2

Ic/E = 14 kJ/m2 for unpatterned samples.
These values compare well with the observed WOF plateau
value of around 18 kJ/m2 for random and unpatterned sam-
ples [Fig. 4(d)]. We can thus conclude that the behavior of
random and unpatterned samples is consistent with brittle
fracture by propagation of the pre-existing crack. In hierar-
chical samples, on the other hand, the much higher plateau
value of the WOF seen in Fig. 4(d) implies a significant
nonessential work of failure.

Direct observation of the samples indicates that
widespread crazing occurs away from the initial crack,
which often is arrested, followed by nucleation and propa-
gation of another crack at a different location of the sample.
Thus, while the peak strength in hierarchically patterned

PS is governed by the length of the initial crack, the same
is not true for the overall work of fracture, which is very
significantly increased by the hierarchical patterning.

III. DISCUSSION

We demonstrate that hierarchical patterning of sheet-
like materials can significantly enhance their resistance to
crack propagation. Whereas samples without hierarchical
patterning in all cases follow the predictions of fracture
mechanics, with hierarchical patterning these predictions
strongly underestimate the crack propagation resistance
of the material. This effect is mainly geometrical: in our
simulations as well as in the experiments on paper, the
hierarchical stress redistribution introduced by an appro-
priate pattern of cuts offsets the effect of crack-tip stress
concentrations. In our experiments on PS samples, the ini-
tial crack controls the peak strength in both hierarchically
patterned samples, but the hierarchical pattern facilitates
crack arrest and forces fracture to propagate in a relay-race
manner by repeated nucleation, propagation, and arrest of
new cracks, alongside widespread crazing.

Thus, while material-specific aspects are of relevance,
the general principle of increasing fracture resilience
by hierarchical patterning is demonstrated to work for
quite different materials: a hypothetical material exhibit-
ing locally perfectly elastic-brittle behavior (our simu-
lations), a fibrous composite, which fails by fiber pull
out, fiber-to-fiber bond failure, and fiber fracture (paper),
and an amorphous polymer (PS), which locally fails by
strain localization and crazing. We may thus conclude that
“stress engineering” via the introduction of hierarchical
structure provides an efficient means to increase fracture
tolerance and to mitigate against the well-known frac-
ture mechanical size effect according to which the strength
of a sample is controlled by the longest crack. We note
that hierarchical patterns are equally efficient in mitigat-
ing statistical size effects where strength is controlled by
the weakest link in a disordered microstructure, as dis-
cussed in Appendix C and illustrated in Fig. 5. Similar
notch tolerance has not been seen in kirigami materials
[30,31] even when a form of hierarchical structure [32,33]
has been utilized. These structures have not been able
to mitigate against the propagation of a single critical
crack.

The presented simulations and experiments consider sit-
uations where quasi-two-dimensional samples of simple
geometry are loaded along a single axis. However, gen-
eralization is straightforward: an example demonstrating a
direct three-dimensional generalization of our HBN con-
struction is shown in Appendix D and Figs. 6(a) and 6(b)
demonstrate that our general conclusions about the bene-
fit of such hierarchical organization for improving fracture
properties carry over to three-dimensional (3D) architec-
tures. More generally speaking, the underlying principle of
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dividing a load-carrying structure into load-parallel fibers
and then connecting these fibers in a hierarchical manner
is fairly generic and can be applied to three-dimensional
structures of general geometry as well as to structures
under multiaxial loading. This idea might be exploited
when dealing with materials that are inherently subject
to statistical scatter, as often encountered in biomateri-
als. The same idea might be used to mitigate against
manufacturing defects as often encountered in additively
manufactured (AM) materials, thus exploiting the geo-
metrical freedom provided by AM to mitigate potential
drawbacks of AM technology in view of material perfor-
mance. As a caveat, we note that the effect demonstrated
here is strongly anisotropic: crack propagation is efficiently
suppressed only if the crack is oriented perpendicular to the
hierarchically connected load-carrying fibers. For materi-
als subject to shear loads, biaxial or even more generic
loadings, more complex architectures (such as a superpo-
sition of hierarchical fabrics of different orientation) may
need to be envisaged.
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APPENDIX A: SIMULATION METHODS

To simulate the mechanical behavior of sheetlike mate-
rials, we rely on 2D beam network models (BNM) of
(semi)brittle material behavior as used in Refs. [23,27].
We consider BNM based on a 2D simple cubic lattice
of interconnected beams, which are clamped together at
their intersections. The points where beams are mutually
connected are referred to as nodes; a BNM of size L has
L(L + 1) nodes. L = 2n is referred to as the network size,
it is taken to be a power of 2. We measure length in units
of the beam length and use a Cartesian coordinate system
aligned with the [10] and [01] lattice directions. The sys-
tem is assumed to be located in the domain 0 ≤ x ≤ L, 0 ≤
y ≤ L + 1. Periodic boundary conditions are imposed in
the load perpendicular (in figures, horizontal) x direction.
Beams oriented parallel to the loading axis are denoted

as load-carrying (LC) beams, their number is NLC = L2;
the LC beams form a set of L parallel fibers of length L.
Beams oriented in perpendicular direction are denoted as
cross-link (CL) beams, their number is NCL; a set of l hor-
izontally connected CL beams is denoted a CL connector
of length l. On the other hand, a set of l vertically adjacent
CL beams that are missing or have failed is denoted as a
gap of length l. A network without missing CL beams is
called a full beam network.

The construction of a deterministic hierarchical beam
network from a FBN can be envisaged as a hierarchical
slicing operation, which starts out from a full beam net-
work where NCL = L(L − 1) and NLC = L2 = 4n. From
this starting point, a hierarchical slice pattern is obtained
by removing cross links such as to create gaps, which
recursively subdivide the structure into load-carrying mod-
ules of decreasing order as illustrated in Fig. 1(a): we start
with a FBN of size L. This is divided by two load-parallel
cuts of length L/2 − 1 into four lower-level modules of
size L/2, forming two groups of two modules loaded in
series; the groups are connected by a remaining, system-
spanning CL connector of length L. Then, each of the four
modules is again divided by two shorter cuts of length
L/4 − 1 into four lower-level modules plus a module-
spanning CL connector of length L/2, etc. For a structure
of size L = 2n, n subdivision operations are possible: n
is therefore called the number of hierarchy levels. The
fraction of CL beams removed in the process is f ∗

CL =
(1/3)(1 − 21−n), which for n 
 1 converges to f ∗

CL = 1/3.
In experimental samples, this corresponds to a total cut
length of 2nLSf ∗

CL where LS is the physical edge length of
the sample.

A randomized version of this network structure (denoted
SHBN) is obtained by randomly swapping rows and
columns of the DHBN connectivity matrix, using L binary
swaps of randomly chosen columns and an equal number
of swaps of randomly chosen rows. An ensuing structure
is illustrated in Fig. 1(b), center, for n = 5. Nonhierarchi-
cal reference structures are FBN and also so-called random
beam networks, where the same fraction f ∗

CL of cross-links
are removed as in a (S)HBN of order n, but the locations
of the removed cross-links are chosen randomly [Fig. 1(b),
right].

Structures with pre-existing cracks are implemented by
removing a set of a adjacent LC beams at locations x0 ≤
x ≤ x0 + a, y = y0 where a is the crack length and, owing
to the periodic boundary conditions in x direction, x is
understood modulo L. To avoid boundary effects at the top
and bottom sample edges and to ensure generic behavior,
in DHBN structures the left crack endpoint (x0, y0) is cho-
sen randomly within the domain 0 ≤ x0 < L, L/4 < y0 <

3L/4. In SHBN structures, by construction the columns
and rows of the hierarchical gap pattern are randomly
permutated between different realizations such that a fixed
crack location can be used.
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(a) (b)

(c) (d)

FIG. 4. Fracture experiments on PS sheets. The sample side length L corresponds to 160 mm. (a) Fractured samples with RBN cut
pattern (left) and with SHBN-type cut pattern (right), initial notch length 4 mm, the fracture surfaces are traced in white; (b) stress-
strain curves for sheets with SHBN patterns (n = 7 hierarchical levels), RBN reference patterns and unpatterned sheets, all with a side
notch of length a = 32 mm; (c) peak stress as a function of notch length for SHBN- and RBN-patterned and unpatterned sheets, full
lines are fits according to Eq. (1); (d) specific work of fracture as a function of notch length for the same set of samples as in (b); the
data points and error bars in (b),(c) each represent the average and standard deviation of data from five samples.

On the beam level, we assume rigid elastic-brittle behav-
ior, i.e., a beam behaves elastically until a stress-based
failure criterion is met and then fails instantaneously and
irreversibly. We measure length in units of the elemen-
tary beam length λ and assume unit beam cross section A
and modulus of resistance I . In terms of nodal forces and
moments the failure criterion for beam ij connecting nodes

i and j then reads
√

(Fini + max[|Mi|, |Mj |]/�)2 + 3Q2
i =

Aσij where ni indicates the outward normal direction of
the beam end surface connecting to node i, Fi is the nor-
mal force on this surface, which can be tensile (Fini >

0) or compressive (Fini < 0), Qi is the shear force, and
Mi is the moment acting on this surface. The beam
strength σij is assumed to be a Weibull distributed random
variable with mean value 〈σB〉, and the exponent of the
Weibull distribution is denoted as β.

In the simulations, the top nodes of the network (y =
L + 1) are displaced rigidly in y direction while the bottom

nodes (y = 0) are fixed. The top displacement is increased
until beam stresses on one beam meet the failure crite-
rion and the beam undergoes brittle failure. This beam is
then removed and stresses are recomputed, leading to pos-
sible secondary failures as the stresses on intact beams may
increase due to the load redistribution. The recomputa-
tion is continued until all remaining beams are below their
failure stress. The applied displacement is then increased
until another beam breaks, and the process repeats until
the system is topologically disconnected.

APPENDIX B: SPECIMEN PREPARATION AND
EXPERIMENTAL TESTING PROTOCOL

Experimental specimens consist of square sheets of
paper and PS. They are tested in uniaxial displacement
controlled tension. Pristine samples are tested along-
side samples that have been sliced to create random or
hierarchical cut patterns. The patterns created by a laser

044035-8



HIERARCHICAL SLICE PATTERNS INHIBIT. . . PHYS. REV. APPLIED 18, 044035 (2022)

cutter directly reproduce the cuts introduced, through beam
removal, in the construction process of DHBN, SHBN, and
RBN simulation models. In Fig. 1 these cuts, which are
applied in load-parallel (vertical) direction, are shown as
blue vertical lines. We test pristine paper samples without
cuts, samples endowed with DHBN and SHBN patterns
representing n = 7 hierarchical levels, and samples with
RBN patterns of the same total cut length. Notches with
lengths a ranging from 0 to 70% of the sheet width L
are cut in load perpendicular (horizontal) direction into
all samples, starting from the left edge of the sheets. For
DHBN structures, notches are located randomly in the
interval L/4 ≤ y ≤ 3L/4. For SHBN structures, the cuts
are always located at y = L/2 while it is ensured that the
cut patterns of different samples represent different ran-
dom permutations of the DHBN connectivity matrix. In
both cases, the randomization ensures that the results on
notched structures are generic and not contingent on a par-
ticular location of the notch with respect to the ordered
DHBN pattern.

Paper samples are produced from sheets of 75 g/m2

copy paper with dimensions 154 × 154 × 0.1 mm3 using
a Epilog Fusion 32 laser cutter to create samples with
HBN, SHBN, and RBN-like cut patterns. These samples
are tested alongside pristine paper samples on a Instron
ElectroPuls E1000 testing machine. Testing is carried out
at room temperature with a constant imposed engineering
strain rate of 2 × 10−4 s−1. A sample with SHBN pattern is
shown after testing in Fig. 3 (left) of the main paper, illus-
trating the cut pattern and showing the super-rough crack
path typical of hierarchically patterned samples.

PS samples are produced from biaxially oriented,
additive-free PS films of 0.05 mm thickness (Goofel-
low GmbH, Hamburg, Germany). The average molecular
weight is determined as 275 kg/mol with polydisper-
sity 3.0. Sheetlike samples of dimensions 160 × 160 ×
0.05 mm3 are produced using a Universal VLS 2.30 laser
cutter; in this case besides pristine sheets only SHBN and
RBN-like patterns are considered. Testing is performed
at room temperature on a Zwick Z050 tensile tester. A
preload of 0.2 N is applied at a displacement rate of 20
mm/min, subsequent testing is performed at a constant
speed of 50 mm/min.

APPENDIX C: HIERARCHICAL PATTERNING
AND STATISTICAL SIZE EFFECTS

Fracture strength is governed by different types of
size effects. In the presence of cracks, the strength of a
cracked sample is often determined by the crack length
as expressed by well-known relations of fracture mechan-
ics, see Eq. (1) of the main paper. Even in the absence
of cracks, the strength of disordered materials is often
governed by weakest-link effects. This is most evident
in long thin wires whose strength is governed by their

weakest cross section. Following standard arguments of
extremal statistics, if the probability of an element to
fail below stress σ is P(σ ), then the failure probability
PN (σ ) for the weakest of N elements fulfils the rela-
tion 1 − PN (σ ) = [1 − P(σ )]N . Specifically, if strength
is Weibull distributed, P(σ ) = 1 − exp[−(σ/σ̂ )β], then
the strength of the weakest element is also Weibull dis-
tributed, PN (σ ) = 1 − exp[−(σ/σN )β] where the charac-
teristic strength of the weakest link fulfils the relation
σN = σ̂N−β . In long thin wires of length L where cross
sections of length d fail independently, we thus find a
size-dependent decrease of average strength according to
〈σ 〉 ∝ (L/d)−β .

Because of this effect, it is unwise to mitigate against
crack propagation in a sheet by slicing it parallel to the
loading direction into unconnected thin ribbons forming a
bundle of fibers, which are then loaded in parallel. While
such a structure fulfills Eq. (2), i.e., it mitigates crack

(a)

(b)

FIG. 5. Statistical size effects. Simulated stress-strain curves,
L = 1024, the label FB refers to a bundle of 1024 uncon-
nected fibers of length L that are loaded in parallel; top: Weibull
exponent β = 4, bottom: Weibull exponent β = 1.5.
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(a) (b)
FIG. 6. Generalization to 3D.
(a) Three-dimensional general-
ization of a 2D HBN as depicted
in Fig. 1, the depicted 3D sam-
ple consists of two n = four-level
hierarchical modules stacked on
top of each other; (b) simulations
of 3D networks of length L =
128 containing cracks of different
lengths, peak stress versus crack
length, Weibull exponent β = 4.

propagation just as efficiently as any hierarchical pattern,
its performance in view of statistical size effects is much
worse. First, it is known from the theory of fiber bun-
dles that the strength of such a bundle is always less
than the mean strength of the individual ribbons. Second
and of note, the strength of the individual ribbons can
suffer badly from statistical size effects: we can approxi-
mately envisage a ribbon of thickness d and length L as a
chain of L/d patches, which are elastically weakly coupled
and thus fail in a roughly independent manner. Thus, for
Weibull-distributed strength of the elementary patches the
overall strength of the ribbon is expected to decrease like
(L/d)−β . The consequences for strongly disordered mate-
rials (low β) are illustrated in Fig. 5: whereas cross-linked
structures (FBN, RBN, DHBN, FHBN) are independent
of the type of cross-linking about the same strength, a
structure where all cross-links have been removed is very
significantly weaker—an effect that becomes more pro-
nounced as the degree of disorder and/or the system size
increases.

The physical reason for this observation is simple: in
a bundle of fibers, as soon as a fiber breaks at its weak-
est links, the remaining intact part of the fiber carries zero
load. In a cross-linked structure, on the other hand, shear
stress transfer between the intact parts of a broken fiber and
adjacent parts of the structure ensures that these intact parts
still contribute to carrying the overall load, thus making
the structure inherently more resilient. It was demonstrated
by Ref. [27] that this makes cross-linking necessary to
achieve strength and reliability in structures composed of
unreliable elements. Figure 5 indicates that this aim is
achieved equally well for hierarchical and nonhierarchi-
cal cross-linking patterns. Hence, hierarchical patterning
provides a means to simultaneously meet the conflicting

requirements of achieving high overall strength and
high flaw tolerance (resistance to crack propagation):
hierarchical patterns work just as well as fully cross-linked
patterns in achieving structural redundancy that mitigates
against statistical size effects, but they work as well as
patterns without cross-links in mitigating against crack
propagation by local stress concentrations.

APPENDIX D: GENERALIZATION TO 3D

The hierarchical construction shown in Fig. 1 can be
readily generalized to 3D. On the highest level one starts
with a cubic block, which is divided by four plane cuts
into eight modules (two groups of four modules in parallel,
separated by a “horizontal” system-spanning connecting
plane). One then proceeds recursively by subdividing each
of the modules. A sample consisting of two stacked hier-
archical cubes, each produced via four subdivision steps,
is shown in Fig. 6(a). Simulated tests of such structures
alongside nonhierarchical reference structures produce a
picture very similar to the 2D case discussed in the main
paper, see Fig. 6(b).
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