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Abstract

Recently developed single-phase concentrated solid-solution alloys
(CSAs) contain multiple elemental species in high concentrations with
different elements randomly arranged on a crystalline lattice. These
chemically disordered materials present excellent physical properties,
including high-temperature thermal stability and hardness, with promis-
ing applications to industries at extreme operating environments. The
aim of this paper is to present a continuum plasticity model accounting
for the first time for the behaviour of a equiatomic five-element CSA,
that forms a face-centered cubic lattice. The inherent disorder associ-
ated with the lattice distortions caused by an almost equiatomic distri-
bution of atoms, is captured by a single parameter α that quantifies the
relative importance of an isotropic plastic contribution to the model.
This results in multiple plasticity mechanisms that go beyond crystal-
lographic symmetry-based ones, common in the case of conventional
single element metals. We perform molecular dynamics simulations of
equiatomic CSAs: NiFe, NiFeCr, NiFeCrCo, and Cantor alloys to vali-
date the proposed continuum model which is implemented in the finite
element method and applied to model nanoindentation tests for three
different crystallographic orientations. We obtain the representative
volume element model by tracking the combined model yield surface.
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Highlights:

� A continuum model is proposed, accounting for both the crystallo-
graphic structure and the considerable degree of disorder in concen-
trated solid solution alloys.

� It is shown that surface topography maps simulated using the contin-
uum model are consistent with atomistic simulation results.

� The inherent disorder associated with the lattice distortions is cap-
tured by a single parameter α that quantifies the importance of an
isotropic plastic contribution to the model.

� The model is inspired and validated by molecular dynamics simula-
tions, and we show that it can be applied to obtain the response of
polycrystalline samples subjected to various boundary conditions.

� We finally discuss how the proposed model can be extended to account
for irradiation hardening, indentation size effects and short-range or-
der.

Keywords— high entropy alloys, nanoindentation, molecular dynamics, finite
element method, crystal plasticity

1 Introduction

High entropy alloys (HEAs) are multicomponent versions of concentrated solid so-
lution alloys (CSAs) that attracted increasing attention throughout recent years
[1, 2]. The main reason behind the interest in these materials is their exceptional
properties such as high strength (also at high temperature), high hardness and re-
sistance to wear, corrosion and irradiation, cf. [3, 4] and references therein. Due to
these properties, they are considered as candidates for various applications where
the materials have to withstand harsh conditions, such as future nuclear power
plants (generation IV and fusion) [5], chemical plants as well as aerospace applica-
tions and biomedical implants [2]. In this paper, we present a continuum plasticity
model considering for the first time the behaviour of an equiatomic multi-element
face centered cubic (FCC) CSA. The inherent disorder associated with the lattice
distortions is characterized by an α-parameter that quantifies the relative impor-
tance of an isotropic plastic contribution to the model implemented in the finite
element method. This results in multiple plasticity mechanisms that go beyond
crystallographic symmetry-based ones. Besides, molecular dynamics (MD) simu-
lations are performed for equiatomic CSA: NiFe, NiFeCr, NiFeCrCo, and Cantor
alloys to validate the proposed continuum model applied to nanoindentation tests
obtaining the representative volume element model by tracking the combined model
yield surface.
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The crystal plasticity (CP) theory is a tool that enables us to get insight into the
active plastic deformation mechanisms (slip, twinning, transformation) in a contin-
uum setting, leading to a given mechanical response and microstructure evolution.
For the material with known properties, it also enables to predict the mechani-
cal response and microstructure evolution provided that the initial crystallographic
orientation is specified. Although the CSAs have been the subject of increasing
interest, some authors [6] reported recently that crystal plasticity (CP) theory has
not been used to study equiatomic CSAs. While this is no longer true, simulating
the behavior and microstructure evolution of CSAs by means of crystal plasticity
theory is still in its nascent stage. In particular, although there is a vast number of
papers concerning modelling the micro- and nanoindentation of conventional metals
and alloys by means of crystal plasticity finite element method (CPFEM), cf. e. g.
[7, 8, 9, 10, 11], it seems there is no such study devoted to the CPFEM simulation
of the indentation in chemically complex CSAs like the Cantor Alloy. We shall now
briefly summarize some CPFEM simulations of CSAs in other contexts.

Lu et al. [12] applied the classical power law CP coupled with simple damage
model to study the effect of strain rates and stress states on mechanical behavior
and texture evolution in polycrystalline CoCrFeNi alloy. Gao et al. [13] applied a
power law plasticity with hardening based on dislocation density evolution to study
the mechanical response and texture evolution of NiCoCrFe deforming by slip and
twinning. It should be noted that the study is not strictly a CPFEM where there
is one or more finite elements in each grain. Rather, the Taylor assumption was
applied in order to merge the contributions of a number of grains in each integration
point. A power law crystal plasticity with both isotropic and kinematic hardening
was applied in [14] in order to simulate Fe44Mn36Co10Cr10 subjected to 10 cycles
of tensile-tensile sine load. Maps of cumulative plastic strain and dominant slip
system were presented. The insterstitial HEA Fe49.5Mn30Co10Cr10C0.5 was studied
in [15, 16]. The modified Orowan equation was used to determine the shear rate
on each slip system and the evolution of dislocation density was treated with the
modified Kocks-Mecking model. The impact of deformation mechanisms on the
ratchetting strain evolution was analysed in [15]. The influence of temperature and
grain size on deformation behavior was studied in [16]. The tensile behaviour of the
polycrystalline Cantor alloy was studied using fast-Fourier transform (FFT) based
crystal plasticity model in [17].

Instead of using the finite element method (FEM) or FFT, one can combine
the responses of individual grains by applying self-consistent modelling. In such a
model, each grain is treated as an ellipsoidal inclusion submerged in a homogeneous
equivalent medium representing the polycrystal. Tazuddin, Biswas and Gurao [18]
conducted the Visco-Plastic Self-Consistent (VPSC) [19] model simulation of rolling
in HEA: MnFeCoNiCu. They have concluded that qualitative agreement with the
experimental texture can be obtained only if the plastic deformation is carried out
with a considerable portion of the partial {111} 〈112̄〉 slip alongside the conven-
tional octahedral {111} 〈101̄〉 slip. The VPSC code was used also in [3] in order to
investigate the contributions of twin variants in texture development of equiatomic
CrMnFeCoNi (Cantor alloy) subjected to rolling. Fang et al. [6] applied a CP
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model to study the behavior of irradiated FeNiMnCr. The irradiation was taken
into account by introducing the term stemming from the presence of dislocation
loops in the critical resolved shear stress (CRSS). The solid solution strengthening
occurring specifically in HEAs was explained to result from the lattice distortion
caused by differences in shear modulus and atomic size of the atoms present in the
alloy composition.

On the other hand, strengthening and plastic deformation of HEA are known to
be atomic-level phenomena that are usually modeled by using molecular dynamics
(MD) simulation to describe the dislocation nucleation and evolution during me-
chanical testing. The information gained in such MD simulations should be then
applied in higher-scale models such as discrete dislocation dynamics or crystal plas-
ticity, which leads us to the multiscale modelling concept. Experimental analyses
of atomic-level materials phenomena are highly demanding and need to be vali-
dated by large-scale atomistic simulation techniques [20, 5]. MD simulations have
been widely performed to understand the plastic deformation mechanisms of HEA
from nanoindentation computational modelling noticing that the length of the dis-
location network nucleated is kept by the geometrically necessary dislocations that
are generated to remove the material from the indenter tip, slowing the mobility
of the dislocations [21, 22]. A particular advantage of simulating nanoindentation
as compared to simulations of other set-ups is the ease at which such simulations
can be compared against experimental data. Other experimental techniques at the
scale available for MD are typically either impossible or require more effort and
are more susceptible to error. By performing simulations of nanoindentation, the
computation of the hardness of the material can be done by using the Oliver-Pharr
method where this value is higher for Cantor HEA than for single element mate-
rials [23]. Moreover, an important feature revealed in MD simulations of spherical
nanoindentation is the emergence of a considerable amount of isotropic plasticity
[23] that is usually compared to pure Ni samples. Typically, the pure single element
metals of 100 orientation show four distinct pile-ups reflecting the crystal symmetry
[24]. The pile-up symmetry related to a given crystallographic orientation appears
naturally not only in MD but also in CP simulations. On the other hand, the
pile-up around an indent in the case of chemically complex materials appears to be
almost circular which is typical for an isotropic material, as observed for polycrys-
talline Cantor alloys [25]. The four-fold crystallographic symmetry is however still
present too. The limit case of circular pile-up observed in nanoindentation can be
easily obtained using the isotropic plasticity model, e. g. J2 plasticity. However,
obtaining the response showing traces of both crystal and isotropic plasticity is to
the best of our knowledge not possible using any continuum mechanics model.

Therefore, the aim of the current contribution is to propose a continuum model
able to reproduce the behaviour of HEAs showing both isotropic and crystal plas-
ticity signatures. The paper is organised as follows. After this introduction, in
Sec. 2 we briefly describe MD simulations performed at three different crystal ori-
entations for a pure Ni sample and a Cantor alloy. The presented results clearly
show that the chemical disorder inherent to this alloy leads a decrease in the pile-
up height variability around an indent. Next, in Sec. 3 the Continuum model of
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Figure 1: Atomic displacements of crystalline Ni in a) and equiatomic CSA:
NiFe in b), NiFeCr in c), NiFeCrCo in d) and Cantor Alloy (NiFeCrCoMn)
in e) on the [001] crystal orientation obtained by MD simulations; at the
maximum indentation depth of 5nm. Slip planes are shown by both samples
due to their FCC structure. However, slip traces on the surface changed due
to the chemical complexity of the Cantor Alloy.

HEAs is described by the classical crystal viscoplastic model, the proposed isotropic
viscoplastic model and shows how they were combined in order to address the ef-
fect observed in MD. It also describes the details of the finite element simulations
performed. In Sec. 4 Results are presented by the surface topographies obtained
using the continuum model compared against the MD results for each orientation.
Followed by the Discussion section (Sec. 5) highlights the issues related to the
chemical disorder and its relation to amorphization, the effect of elastic anisotropy
and discusses the predictions of mechanical response as observed in other deforma-
tion schemes. In particular, the yield surface points obtained using crystal plas-
ticity, isotropic plasticity and the combined isotropic-crystal plasticity model are
presented. Finally, Conclusions are recapitulated in Sec. 6 where the main findings
of the paper suggest further research directions in terms of validation, application
and possible extension of the proposed continuum model. It also points out the
way to determine its limitations in terms of scale and atomic structure of a given
material.
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Table 1: Simulation boxes sizes and number of atoms
Orientation Size (dx, dy, dz) [nm] Atoms

[001] 33.20 x̂ × 36.09 ŷ × 36.12 ẑ 3 164 800
[110] 33.06 x̂ × 36.17 ŷ × 38.71 ẑ 3 442 032
[111] 33.07 x̂ × 36.12 ŷ × 40.61 ẑ 3 645 720

2 Molecular Dynamics simulations

An atomistic computational model is applied to emulate nanoindentation test of
pure crystalline nickel and equiatomic CSAs: NiFe, NiFeCr, NiFeCrCo, and Can-
tor NiFeCrCoMn alloys by the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [26] and interatomic potentials reported by Choi et al. [20];
which are based on the second Nearest Neighbor Modified Embedded Atom Method
(2NN-MEAM), as shown in Fig 1. MD simulations first start by defining the initial
energy optimized Ni sample and equilibrated for 100 ps with a Langevin thermostat
at 300 K and a time constant of 100 fs [27]. This is done until the system reaches a
homogeneous sample temperature and pressure profile, at a density of 8.78 g/cm3.
A final step is performed by relaxing the prepared sample for 10 ps to dissipate
artificial heat.

For the crystalline equiatomic CSAs samples, Ni atoms are substituted at the
required percentage for the CSAs randomly in the original FCC Ni sample following
a thermalization at T= 300 K for 2 ns. The system is further equilibrated through
Monte Carlo (MC) relaxation, using a canonical ensemble with a compositional
constraint by performing atomic swaps, as implemented in LAMMPS. Then the
slab is exposed to the surface boundary conditions (2D periodicity) at 300 K into
the microcanonical emsemble where the number of particles, N, the sample volume,
V, and the system energy, E, are assumed to be constant during the NVE molecular
dynamics simulation performed for 20 ps (with 1 fs steps) [5]. The dimensions of
the simulation box by considering different crystal orientations for the 5-element
CSA are mentioned in Table 1.

2.1 Nanoindentation test

In order to perform MD simulations of nanoindentation, the prepared sample is
divided into three sections on the z direction for setting up boundary conditions.
In addition, we consider 7 nm vacuum section on the top, above the material
sample and also the two lowest bottom layers are kept frozen (∼ 0.02×dz) to
assure stability of the atoms when nanoindentation is performed. A thermostatic
region above the already defined frozen one is considered to dissipate the generated
heat during nanoindentation, with a thickness of ∼ 0.08×dz. In the rest of the
layers the atoms are free to interact with the indenter tip that modifies the surface
structure. Periodic boundary conditions are set on the x and y axes to simulate
an infinite surface, while the z orientation contains a fixed bottom boundary and a
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free top boundary in all MD simulations.
The indenter tip is considered as a non-atomic repulsive imaginary (RI) rigid

sphere with a force potential defined as: F (t) = K (~r(t)−R)
2

where K = 236
eV/Å3 (37.8 GPa) is the force constant, and ~r(t) is the position of the center of
the tip as a function of time, with radius R. Here, ~r(t) = x0x̂ + y0ŷ + (z0 ± vt)ẑ
with x0 and y0 as the center of the surface sample on the xy plane, the z0 = 0.5
nm is the initial gap between the surface and the intender tip moves with a speed
v = 20 m/s performed for 125 ps with a time step of ∆t = 1 fs. The maximum
indentation depth is chosen to 5.0 nm to avoid the influence of boundary layers
in the dynamical atoms region [5]. In Fig. 1, we report results for the atomic
displacement of the pure Ni in a) and for equiatomic CSA: NiFe in b) [5], NiFeCr
in c), NiFeCrCo in d), and Cantor alloy in e) on the [001] crystal orientation, at the
maximum indentation depth; noticing that single element materials presents slip
traces with the four pile-ups. On the other hand, the atoms are accumulated around
the indenter tip for the CSA sample, which is an effect of the lattice mismatch due
to the chemical complexity of the Cantor alloy. The same effect was observed in [28],
where surface topography maps obtained from MD simulations of nanoindentation
in Ni and CoCrNi were juxtaposed (see Fig. 10. in op. cit.). Nevertheless, the CSA
preserves the FCC geometry as observed for the slip planes in Fig. 1 for different
cases.

Motivated by these results, we decided to model the surface morphology of
indented CSA by a crystal plasticity model, as discussed in the following section.

3 Continuum model accounting for chemical dis-
order

In this section we first review the classical crystal viscoplasticity approach. Then
we propose the power law isotropic viscoplasticity model. Finally, we suggest the
way to combine the abovementioned models in order to account for the behaviour
of CSAs which due to their inherent lattice-level disorder show the features of both
crystalline and isotropic materials.

3.1 The crystal plasticity model

The rate-dependent crystal plasticity model with phenomenological hardening law
implemented in the total Lagrangian setting was already described in a number of
papers, e. g. [29, 30]. Here we include its description for the sake of the paper’s
clarity.

The kinematics follows classical contributions, cf. [31, 32, 33]. Multiplicative
decomposition of the deformation gradient F into elastic Fe and plastic Fp parts
is performed:

F = FeFp, (1)

and the evolution of the plastic part Fp is dictated by the plastic velocity gradient
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L̂p :

Ḟp = L̂pFp. (2)

The plastic velocity gradient is calculated as a sum of shear rates γ̇r projected on the
r-th slip system direction mr

0 and plane normal nr0 in the reference configuration:

L̂pcrystal =

M∑
r=1

γ̇rmr
0 ⊗ nr0 (3)

The shear rates are obtained using the power law [33] with the reference slip
velocity v0 treated as a model parameter:

γ̇r = v0sign(τ r)

∣∣∣∣τ rτ rc
∣∣∣∣n . (4)

Here, n is a rate-sensitivity parameter. The Mandel stress tensor Me is projected
on a given slip system r in order to calculate the resolved shear stress (RSS):

τ r = mr
0 ·Me · nr0, (5)

while the hyper-elastic law is applied to obtain the Mandel stress:

Me = 2Ce
∂Ψ

∂Ce
. (6)

Here, the right elastic Cauchy-Green tensor Ce = FTe Fe is used and the free energy
density Ψ is defined in terms of the elastic Lagrangian strain tensor Ee = 1

2 (Ce−1)
and the four-dimensional stiffness tensor Ce:

Ψ =
1

2
Ee · Ce ·Ee (7)

Concerning the critical resolved shear stress (CRSS) τ rc on a given slip system
r, its evolution is governed by the exponential Voce-type hardening law:

τ̇c
r = H(Γcrystal)

M∑
s=1

hrs |γ̇s| . (8)

with

H(Γ) =
dτ(Γcrystal)

dΓcrystal
, (9)

and

τ(Γcrystal) = τ0 + (τ1 + θ1Γcrystal)

(
1− exp

(
−Γcrystal

θ0

τ1

))
(10)

Where the accumulated plastic shear is defined as follows:

Γcrystal =

∫
Γ̇crystaldt, Γ̇crystal =

∑
r

|γ̇r| (11)

The latent hardening parameter hrs is equal to 1 for r = s (self-hardening), whereas
for r 6= s (latent hardening), it is equal to q0 on coplanar systems and q on non-
coplanar systems. The model parameters for pure Ni were taken from [34] and are
listed in Tab. 2.
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Table 2: Elastic constants and crystal plasticity model parameters for pure
Ni [34].
C11 C12 C44 τ0 τ1 θ0 θ1 q q0 v0 n

GPa GPa GPa GPa GPa GPa GPa

246.5 147.3 124.7 0.008 0.142 0.240 0.0075 1.4 1.0 0.0001 10

Table 3: Elastic and plastic parameters of the isotropic model for pure Ni.
E ν σy0 Kh Rinf δh ηrel n

GPa - GPa GPa GPa - (GPa · s)−1 -

220 0.31 0.012 0.1 0.04 22 1000 10

3.2 The isotropic plasticity model

In order to simulate the nanoindentation with isotropic distribution of plastic shear,
some J2-based model (as the one in section 2.1 of [10]) could have been applied.
However, we wanted to have the model directly analogous to the CP model so that
the combined model can then be built (see the next section). The structure of
the model is thus similar to the CP model presented above. The differences are
described in the following.

Equations 1 and 2 still hold. We propose the model of the isotropic contribution
to be analogous to the finite strain version of the viscoplastic Perzyna-type model.
However, we replace the yield surface and its derivative with the power law. We
thus obtain (details of the derivation are presented in Appendix B):

L̂pisotr =
1

η

(
1

J

)n+1(
σeq
σy

)n
s, (12)

where η is the viscosity parameter, n is the rate sensitivity exponent (the same as
in the crystal plasticity model), σeq is the equivalent Huber-Mises stress, σy is the
yield stress and s is the stress deviator.

Equations 6 and 7 still hold. The linear-exponential hardening describes the
evolution of the yield stress:

σy = σy0 +KhΓisotr +Rinf
(
1− e−δhΓisotr

)
, (13)

where σy0, Kh, Rinf and δh are the hardening parameters. The model parameters
for pure Ni, calibrated in such a way that the mechanical response is equivalent to
the crystal response, are presented in Tab. 3.

Γisotr is the accumulated plastic shear which is defined as follows:

Γisotr =

√
2

3
Ep.Ep, (14)

where Ep = 1
2

(
FTp Fp − I

)
is the plastic Lagrangian strain tensor.
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3.3 The combined isotropic-crystal plasticity model

Finally, the crystal and isotropic plasticity models are combined in order to account
for the observed behaviour of HEAs. The degree of isotropy is described by the
parameter α. Therefore, the velocity gradient is now defined as follows:

L̂pHEA = αL̂pisotr + (1− α)L̂pcrystal, (15)

where L̂pisotr and L̂pcrystal have been defined in equations 12 and 3, respectively. Also
the hyper-elastic law 6 is still valid but the elastic stifness tensor is now computed
as:

CHEA = αCisotr + (1− α)Ccrystal. (16)

The hardening contributions are calculated separately for the isotropic and crystal
parts.

3.4 The finite element simulation details

The material models described above have been implemented using the AceGen
software [35, 36], which takes advantage of the automatic code generation, auto-
matic differentiation and automatic expression optimization techniques. In the case
of the crystal plasticity and the combined model, 12 {111} 〈110〉 FCC slip systems
were used. The finite element simulations have been carried out using the AceFEM
software [35, 36] applying 8-noded hexahedral elements. The F-bar method [37] is
applied for the sake of the robustness of the implementation when the nearly in-
compressible behaviour of the material is enforced in the finite deformation regime.

The mesh used to perform the simulations is similar to the one used in [10]
and shown in Fig. 2. The applied mesh density is not necessary from the point of
view of the solution convergence (see [10] for mesh convergence analysis) but it is
done in order to get an excellent resolution of the surface topography maps. The
dimensions of the whole mesh along x and y directions are 60 nm and the height is
equal to 30 nm. In total, the mesh is built using 121,824 linear hexahedral elements.
The most refined region shown in Fig. 2b has x and y dimensions equal to 20 nm
and is 1.67 nm thick. It was divided into 72 x 72 x 2 finite elements. The refined
region is connected with the rest of the mesh using a hanging nodes formulation
described in section 2.4 of [10].

The essential boundary conditions are applied as follows. The deformation of
the lateral surfaces in the normal direction is set to zero. The bottom surface is
forced to move in the positive z direction up to hmax = 5nm and the position of
the indenter is fixed. This is of course equivalent to fixing the bottom surface along
the z direction and moving the indenter in the negative z direction but the former
approach was easier to implement.

The nanoindentation was simulated using the contact surface element imple-
mented in AceGen. The spherical indenter is treated as a rigid ball. The 4-noded
quadrilateral element with Lobatto quadrature is applied. In order to exactly fulfill
the impenetrability condition:

gN ≥ 0 ∧ tN ≤ 0 ∧ tNgN = 0, (17)
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the augmented Lagrangian formulation (cf. [38, 39, 10]) was used. In Eq. 17 gN
denotes the normal gap and tN is the contact pressure. Similarly as in [10, 11],
friction was neglected here.

4 Results

Fig. 3 shows the surface normal displacement maps obtained by using the isotropic
plasticity model and the crystal plasticity model for 100, 110 and 111 orientations
for a pure Ni sample. Since the spherical tip is considered, the surface topography
resulting from the isotropic model simulation does not show any preferred direction.
In addition, the symmetries predicted by the CP model directly reflect the crystal-
lographic symmetry for a given crystallographic orientation. The results of the MD
simulations with the same tip radius and maximum indentation depth are shown
in Fig. 4. Since different methods were used, an exact quantitative agreement was
not expected. However, the qualitative agreement in terms of the type of pile-up
symmetry can be observed. In particular, one can see the four-fold symmetry for
orientation 100 (cf. Fig. 3b and 4a), two perpendicular mirror planes with four
pile-ups in the case of orientation 110 (cf. Fig. 3c and Fig. 4b) as well as the
three-fold symmetry with mirror planes for orientation 111 (cf. Fig. 3d and Fig.
4c).

As it was already discussed in the MD simulation section, in CSAs, the defor-
mation by glide on crystallographic slip systems is less pronounced than in classical
metals and alloys (cf. Fig. 1). In particular, the surface topography in nanoinden-
tation is affected by crystal symmetry to a lesser extent and presents some degree
of isotropy. This can be especially seen when comparing the MD results of the high

Figure 2: The finite element mesh used in all the FEM simulations reported
here together with the visualization of the indenter: a) the whole mesh, b)
the most refined region.
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entropy alloy with pure Ni for orientation 100 (5b and 4a), 110 (7b and 4b) and 111
(8b and 4c). Accounting for this effect was a goal of the combined isotropic-crystal
plasticity model developed in section 3.3. Fig. 5a shows the surface topography
after indentation predicted using this model for orientation 100 with equal contri-
butions of isotropic and crystal plasticity (α = 0.5). Comparing with Fig. 3a and
3b one can clearly see the origin of this topography. This is in qualitative agree-
ment with the MD result for HEA shown in 5b. On the other hand, there are some
quantitative differences, especially in the case of pile-up height. However, first,
quantitative agreement between the atomistic model and continuum model was not
expected. Second, as it was pointed out in [40], the pile-up height is considerably
affected by hardening parameters and hardening parameters were not calibrated
to precisely match the pile-up height in the present paper. On the other hand, in
the case of MD, the pile-up height is strongly affected by the choice of interatomic
potential, cf. [24, 21].

Fig. 6 presents the amount of accumulated plastic shear Γ divided into a)
isotropic (cf. Eq. 14) and b) crystal plasticity (cf. Eq. 11) contributions in

Figure 3: The surface deformation after indentation simulated using FEM
with isotropic model (a) and crystal plasticity for [100] (b), [110] (c) and
[111] (d) orientations. The scale is in nm.
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Figure 4: Atoms displacements at the maximum indentation depth for a
crystalline pure Ni oriented on [100] in a), on [110] in b), and [111] in c),
obtained in MD simulation.

the combined model for orientation 100. One can see that the observed effect of
isotropization is indeed the result of simulataneous contributions of isotropic and
crystal plasticity.

Figures 7 and 8 show the results analogous to 5 for orientations 110 and 111,
respectively. These pictures confirm that the observed effects are not related to any
particular crystallographic orientation, which was expected.

5 Discussion

Wang et al. [41] studied the crystalline-to-amorphous phase transformation ahead
of the crack tip in the NiFeCrCoMn Cantor alloy. Based on MD simulations with bi-
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Figure 5: The surface deformation after for orientation 100 with a) FEM
simulation with the combined HEA model and b) MD simulations. The
numbers are in nm. 14



Figure 6: The accumulated shear coming from a) isotropic (cf. Eq. 14) and
b) crystal (cf. Eq. 11) plastic shearing for orientation 100 obtained in FEM
simulation with the combined HEA model.
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Figure 7: The surface deformation after indentation for orientation 110 with
a) FEM simulation with the combined HEA model and b) MD simulations.
The numbers are in nm.
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Figure 8: The surface deformation after indentation for orientation 111 with
a) FEM simulation with the combined HEA model and b) MD simulations.
The numbers are in nm. 17



nary Cu-Al potentials, they concluded that the mechanism of transformation is the
dislocation tangles development which finally lead to emergence of the amorphous
phase. The severe increase of the dislocation density is due to high lattice resistance
which limits the dislocation motion. The authors enlist also other possibilities to
obtain an amorphous phase by plastic deformation reported in the literature, such
as cold rolling or high pressure torsion, where the transformation mechanism is
similar. Moreover, as noted in [21], the same amount of plastic strain in the multi-
component alloy, as compared to pure metal, leads to a higher dislocation density
in a smaller volume. This can finally lead to amorphization. Although in [21]
the amorphization was not observed in the case of the Cantor alloy subjected to
indentation, this can be due to a different MD potential than the one used in [41].

It is interesting to link these results to our findings. Note that the severe lattice
distortion inherent in the structure of HEAs leads to a decreased peak intensity
and greater peak width (cf. [21, 42]) and high lattice friction leads to increased
dislocation density (because the dislocations cannot freely move deep inside the
material, cf. Fig. 3 and 4 in [21]). Even if the combination of those two effects does
not lead to a fully amorphous system, it is expected that the system’s behaviour
will be impacted by this added disorder so using the combined isotropic-crystal
plasticity model as proposed here seems to be justified.

In our isotropic-crystal plasticity model, we have proposed that both the elas-
tic and plastic deformation consists of isotropic and crystal components as this
appeared as the most natural way of building the model. However, it was reported
that elastic anisotropy of the Cantor alloy is actually higher than in the case of
Nickel. In particular, the Zener anisotropy parameter

AZener =
2C44

C11 − C12
(18)

for Ni is equal to 2.51 [34], whereas for the Cantor alloy the reported values are
2.88 [17], 4.09 [43] and 4.15 [44]. The Zener parameter calculated for the elastic
stiffness tensor calculated in Eq. 16 and parameters reported in Tabs. 2 and 3
is equal to 1.56 which is obviously much lower. Therefore, we decided to verify if
the elastic anisotropy has any effect on the nanoindentation results presented here.
Fig 9 shows the surface deformation for orientation 100 simulated with full elastic
anisotropy taking elastic constants equal to C11 = 170GPa, C12 = 100GPa and
C44 = 143 GPa [43] (which yields AZener = 4.09). Comparing with 6a it can be
concluded that no discernible difference can be seen and thus the results presented
in the Results section are valid even though the high elastic anisotropy of HEAs
was not taken into account.

Apart from indentation, in the vast majority of papers reporting mechanical
tests of HEAs the response was analysed by uniaxial tension [13, 6, 12, 16]. Other
types of tests include cyclic tension-compression [15], fatigue [14] and shear-tension
experiments [12]. However, it appears that no one has systematically studied the
yield surface of any HEA. Therefore, we provide the yield points calculated using
our model in order to trigger the discussion and in order to show how the developed
model works. They were calculated with a representative volume element (RVE)
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Figure 9: (Color on-line). The surface deformation after FEM simulation of
indentation for orientation 100 with the combined HEA model and elastic
constants: C11 = 170GPa, C12 = 100GPa and C44 = 143 GPa [43].

consisting of 1000 elements with random crystallographic orientations subjected to
periodic boundary conditions (see [29, 30] for details) with various F22

F11
ratios so as

to achieve various points in the σ1 − σ2 principal stress plane. The simulation was
stopped when the accumulated plastic shear Γ was equal to 0.002 and the stress
tensor values were recorded at that point.

The normalized yield points (stress values divided by σ1 at yield at uniaxial
tension) are shown in Fig. 10. The J2 yield surface is also provided. The highest
differences appear in the biaxial state, therefore a close-up of this region is provided
in Fig. 10b). One can clearly see that the power-law isotropic plasticity points (in
green) are the most ooutward and the crystal plasticity model (black points) are
the most inward. It should be however noted that maximum differences do not
exceed 3%. The combined isotropic-crystal plasticity model provides the points
that lie in-between the two which was expected. This proves that the model leads
to reasonable predictions also for the polycrystalline case. Moreover, it can be
concluded that the position of the yield point obtained with the combined model
is driven by the value of the single parameter α.

Qiu et al. [45] reported that compression in the case of Cantor alloy is associated
with much higher stress than tension. Interestingly, even the elastic part of the
stress-strain curve in compression and tension do not match each other. It should
be noted that the geometry of tensile and compressive specimens in op. cit. was
considerably different so it is hard to say if the effect is real or geometry-related.
Moreover, no details on the procedure to avoid barelling in the case of compression
specimens was supplied. On the contrary, Jang et al. [46] who described their
procedure to avoid barrelling in detail, did not observe any considerable tension-
compression asymmetry while studying the same alloy composition. Therefore,
we do not introduce any tension-compression asymmetry in our continuum model,
bearing in mind that such asymmetry can be easily introduced in the case any real
HEA to be studied presents such a behaviour.
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a) b)

Figure 10: (Color on-line). Normalized yield points in the σ1 − σ2 plane
obtained in FEM simulations with all three continuum models together with
the normalized J2 yield surface: a) all calculated points, b) close-up of the
interesting region. The single parameter α allows to obtain the yield points
intermediate with respect to the isotropic and crystal plasticity models.

One could also wonder whether the effect observed in MD simulations can be
reproduced using other implementations of the continuum model. As changing the
values of the self-hardening will change the pile-up heights in the radial direction,
they will not affect the relative heights in the peripheral direction. On the other
hand, as the influence of the latent hardening in this aspect can be more compli-
cated, we decided to conduct additional analysis. To this aim we have performed
the simulations of indentation with the parameter q (accounting for latent hard-
ening on non-coplanar slip systems) values equal to 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6, 1.8 and 2.0. In order to clearly see the changes in amplitudes between hills
and valleys around an indent, we have drawn a circle around the indent. We made
sure that the circle goes through the zone of considerable pile-up (see Fig. 11c for
q = 0 and supplementary Figs. S.1. and S.2. for all the other cases). Then, the
surface topography projected on the circle was drawn in terms of height vs angle
(see Fig. 11a, where also the results for the isotropic model are shown). One can
see that indeed the amplitude decreases with decreasing q. Fig. 11b shows the
corresponding results for the combined model with q = 1.4 and α equal to 0.75, 0.5
and 0.25. Obviously, amplitude decreases with increasing α (note that increasing
α is related to increased contribution of isotropic plasticity). Finally, note that the
crystal plasticity model predicts always (even with q = 0) lower amplitude than in
the case of the combined model (even with α = 0.25). To facilitate the quantitative
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Figure 11: (Color on-line). The heights along the circles drawn around an
indent (as shown in c) for a) the isotropic model and crystal plasticity models
with varous values of q, b) for the combined isotropic-crystal plasticity model
with q = 1.4 and various values of α. c) The surface topography obtained
in the simulation with crystal plasticity model and q = 0. The circle going
through pile-ups is shown in black.

comparison, the amplitudes are also summarized in Tab. 4.
To sum up, it appears that it is not possible to reach the level of isotropic con-

tribution observed with the combined model by using the crystal plasticity model
with decreased latent hardening on non-coplanar slip systems in our formulation.
However, we do not claim that it is not possible in general. Perhaps, when ap-
plying more elaborate latent hardening model (e. g., 6 various parameters were
applied to specify the hardening matrix in [47]), one could reach similar results as
the ones presented here. Moreover, we emphasize that the combined model is a
purely phenomenological approach to recreate the effect observed in MD.
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Table 4: The amplitudes (differences between maximum and minimum
heights) obtained in the FEM simulations of spherical indentation for the
crystal plasticity (various values of q) and combined isotropic-crystal plas-
ticity (various values of α) models.

Crystal plasticity, q = Combined model, α =

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.25 0.50 0.75

0.273 0.396 0.437 0.448 0.540 0.460 0.448 0.456 0.437 0.418 0.377 0.193 0.108 0.038

6 Conclusions

In this paper, a continuum model of concentrated solid solutions has been pro-
posed. Using the single parameter α, the model combines the features stemming
from both crystalline symmetries, as well as an isotropic disorder-induced contri-
bution, in both elastic and plastic regimes. Definition of the model in the finite
deformation regime enables us to perform simulations of nanoindentation tests. The
predictions of the combined continuum model have been shown to be qualitatively
consistent with atomistic (MD) simulations both in terms of the resulting surface
topography maps and load-displacement curves. To the best of authors’ knowl-
edge, this is a first study where lattice disorder, inherent in HEAs, is taken into
account in the continuum crystal plasticity based model. In addition, such issues
as amorphization and its relation to atomic disorder, as well as the effect of elastic
anisotropy were discussed. Furthermore, the predictions of the normalized yield
surface points obtained by subjecting a polycrystalline RVE to various periodic
boundary conditions were supplied.

For validation, we have shown that the model predictions are qualitatively con-
sistent with atomistic simulations, but it should be further validated by comparing
with other lower scale models, such as discrete dislocation dynamics, as well as
with experimental data. In particular, systematic investigations using nanoinden-
tation and atomic force microscopy of various compositions starting from pure Ni
and equiatomic CSAs as in Fig. 1 would provide adequate results to validate the
proposed approach. Other ways of validating the reported model could be provided
by experimental investigation of normalized yield surfaces in CSAs as compared to
pure metals (cf. Fig. 10).

The model has been validated through molecular dynamics simulations of equiatomic
CSA: NiFe, NiFeCr, NiFeCrCo, and Cantor alloys, possibly the most intensively
studied HEAs to date. In the future, the proposed continuum model should be
compared also against other CSAs. For this purpose, the proposed continuum
model requires the development of an additional set of parameters that are in gen-
eral different for each material studied. Here, as only the qualitative agreement with
MD was sought, the parameter calibration step for the combined model was omit-
ted (the parameters established separately for the crystal and isotropic plasticity
models were used also in the continuum model). However, seeking for a quantita-
tive agreement with experimental data, it should be calibrated. We have recently
conducted the optimization of crystal plasticity parameters using evolutionary al-
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gorithm [11] in a similar spirit to what was done in [48], where the Nelder-Mead
algorithm was applied for this task. In the future, we will apply our optimization
approach in the CSA context so that the model will be in the best possible quanti-
tative agreement with the experimental data both in terms of the measured surface
topography and the stress-strain response.

Recently, some researchers managed to manufacture HEAs and test them using
instrumented nanoindentation. Ye et al. [49] performed Berkovich nanoindentation
for the Cantor alloy. Load-displacement curve was presented and it can serve to
calibrate the hardening parameters of the combined model in the future. However,
only a map of indents was provided and it is not possible to obtain information
about the details of surface topography from this paper. On the other hand, surface
topography maps for NiCoFeCr were supplied in [50], but due to using Berkovich
indentation it is not straightforward to tell whether the effect being the subject of
the present paper can be observed there. Thus, experimental validation of the MD
predictions shown here and in a previous study [28] requires new nanoindentation
tests, preferably using spherical indentation and AFM measurements of surface
topography.

As pointed out in [51], the random occupation of lattice sites by constituent
atoms (as observed in the Cantor alloy) is not common in other CSAs. Rather, the
atomic configurations that are thermodynamically most stable typically present
some chemical short range order (C-SRO). It is therefore interesting to check how
C-SRO changes the material behaviour and whether these changes can be accounted
for using the developed continuum model. To the best of author’s knowledge, there
were so far no studies reporting MD simulations of nanoindentation in CSA with
C-SRO. After such simulations are carried out, the surface topographies should be
rigorously studied and we expect that the combined model will be able to capture
the mechanical behaviour affected by the level of disorder by simply changing the
value of a single parameter α.

Other possible extensions or modifications of the model are straightforward, as
in other constitutive descriptions of plasticity. Note that it is relatively easy to
extend the model to address such phenomena as irradiation hardening (cf. e. g.
[52]) or indentation size effect (through strain gradient plasticity, cf. e. g. [53]),
especially exploiting the automatic differentiation and automatic code generation
of modern software such as MFRONT [54] or AceGen [35]. To the best of our
knowledge, the effect of irradiation on the chemical disorder in CSAs was not thor-
oughly studied thus far. However, if the irradiation changes the chemical disorder
considerably, we expect that the single parameter α is going to capture this.

It is obvious that the proposed model accounts for phenomena emerging at the
atomistic level. In particular, both the indenter’s radius and maximum penetration
depth were set to 5nm. It is now interesting to consider whether the effects observed
in MD simulations will be still present at the larger scale. The presented isotropic-
crystal plasticity model was built in order to address the effects observed in MD.
At the same time it is scale-insensitive – the same result will be shown for tip
radius at the scale of nano-, micro- or millimeters provided that the depth-to-
radius ratio is fixed. On the other hand, the observed ”isotropization” of the
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surface topography is related to dislocation patterns driven by atomic-scale chemical
disorder. In Appendix A we demonstrate that the effect is still observed in MD
simulations when the radius of the indenter’s tip is increased from 5 to 12 nm.
However, it should be examined using dedicated experiments or simulations on even
larger material volumes (e. g. discrete dislocation dynamics) whether this effect
disappears when the indented volume is larger by e. g. an order of magnitude.
After answering this question, it will become clear whether the proposed model is
general and can be applied at a larger scale or its area of application is limited to the
nanometer scale. Moreover, if the effect of chemical disorder gradually diminishes
with increasing the sample volume, this will give rise to the size effect different from
the one driven by presence of geometrically necessary dislocations. The former one
can be simply captured by varying the single parameter α and only the treatment
of the latter needs a strain gradient plasticity approach as e.g. in [53].

One should note that the physical mechanisms behind the appearance of isotropic
contribution in surface deformation of CSAs remain unclear. Based on the per-
formed MD results [5], we conjecture that the amorphous-like pile-ups stem from
the combined effect of the partial {111} 〈112̄〉 slip and cross-slip. Possibly there
are also some other mechanisms involved. For the time being, all those effects
were taken into account collectively using a simple Perzyna-type isotropic plasticity
model component. In the future, we will implement a detailed model that directly
accounts for {111} 〈110〉 slip, as well as partial {111} 〈112̄〉 slip, and cross-slip and
compare the results with the MD simulations, the combined model presented in
this paper, and hopefully also with experimental data from nanoindentation.
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A Size Effect

We perform MD simulation for an indenter tip radius of 12 nm for the pure Ni and
Cantor alloy samples on the [111] orientation, as shown in Fig. 12. We noticed
that the effect of ’ring’ formation around the indenter tip for the Cantor alloy
does not depend of the tip size. This is a property of the chemically complex
HEA due to the lattice mismatch. For the Ni sample, the slip traces are observed
at the maximum indentation depth by following three–fold symmetry with mirror
planes, while the 5–element HEA alloy tends to form clusters of atoms around the
indenter tip. We provide a video CantorAlloy_111.gif with the visualization of
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the formation of this ’ring’ in the supplementary material (a corresponding video
for pure Ni Ni_111.gif is also available).

B Derivation of the velocity gradient for the isotropic
part of the model

We build the isotropic plasticity model starting from the Perzyna-type viscoplastic
model defined within the infinitesimal strain theory. In such a model, the J2 yield
surface appears:

F = σeq − σy
and the plastic part of the velocity framework is defined as follows:

L̂p =
〈F〉
η

∂F
∂σ

.

When we represent the tensors in the index notation, this has the following form:
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Figure 12: (Color online) Comparison between a pure Ni to Cantor Alloy
on the [111] orientation with a indenter tip radius of 12 nm.
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Which, in direct notation is equivalent to:

L̂p =
1

η

3

2

〈F〉
σeq

s.

On the other hand, when switching to the finite strain formulation the derivative
is taken wrt. to the Kirchhoff stress τ = Jσ. Therefore:
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〈F〉
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Then, we create an ad hoc modification so that the velocity gradient is analogous
to the one appearing in the power law crystal plasticity:

L̂p =
1

J

1

η

3
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σeq
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)n
s.
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[19] R. A. Lebensohn, C. N. Tomé, A self-consistent anisotropic approach for
the simulation of plastic deformation and texture development of polycrystals:
Application to zirconium alloys, Acta Metall. Mater. 41 (1993) 2611–2624.

[20] W. M. Choi, Y. Jo, S. Sohn, et al., Understanding the physical metallurgy of
the cocrfemnni high-entropy alloy: an atomistic simulation study, npj Comput
Mater 4 (2018) 1.

[21] I. Alabd Alhafez, C. J. Ruestes, E. M. Bringa, H. M. Urbassek, Nanoinden-
tation into a high-entropy alloy – an atomistic study, Journal of Alloys and
Compounds 803 (2019) 618–624.

[22] Y. Qi, T. He, H. Xu, Y. Hu, M. Wang, M. Feng, Effects of microstructure
and temperature on the mechanical properties of nanocrystalline cocrfemnni
high entropy alloy under nanoscratching using molecular dynamics simulation,
Journal of Alloys and Compounds 871 (2021) 159516.

[23] C. J. Ruestes, D. Farkas, Dislocation emission and propagation under a nano-
indenter in a model high entropy alloy, Computational Materials Science 205
(2022) 111218.

[24] J. Varillas, J. Ocenasek, J. Torner, J. Alcala, Unraveling deformation mecha-
nisms around fcc and bcc nanocontacts through slip trace and pileup topog-
raphy analyses, Acta Materialia 125 (2017) 431–441.

[25] Y. Qiu, Y. Qi, H. Zheng, T. He, M. Feng, Atomistic simulation of nanoinden-
tation response of dual-phase nanocrystalline cocrfemnni high-entropy alloy,
Journal of Applied Physics 130 (2021) 125102.

[26] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
et al., Lammps - a flexible simulation tool for particle-based materials modeling

28



at the atomic, meso, and continuum scales, Computer Physics Communica-
tions 271 (2022) 108171.

[27] F. Dominguez-Gutierrez, S. Papanikolaou, A. Esfandiarpour, P. Sobkowicz,
M. Alava, Nanoindentation of single crystalline mo: Atomistic defect nucle-
ation and thermomechanical stability, Materials Science and Engineering: A
826 (2021) 141912.

[28] D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, J. Shi, H. Wang, Atomistic
insights into the deformation mechanism of a cocrni medium entropy alloy
under nanoindentation, International Journal of Plasticity 142 (2021) 102997.

[29] K. Frydrych, K. Kowalczyk-Gajewska, Grain refinement in the equal channel
angular pressing process: simulations using the crystal plasticity finite element
method, Model. Simul. Mater. Sci. Eng. 26 (2018) 065015.

[30] K. Frydrych, K. Kowalczyk-Gajewska, A. Prakash, On solution mapping and
remeshing in crystal plasticity finite element simulations: Application to equal
channel angular pressing, Model. Simul. Mater. Sci. Eng. 27 (2019) 075001.

[31] R. Hill, J. R. Rice, Constitutive analysis of elastic–plastic crystals at arbitrary
strain, J. Mech. Phys. Solids 20 (1972) 401–413.

[32] R. J. Asaro, J. R. Rice, Strain localization in ductile crystals, J. Mech. Phys.
Solids 25 (1977) 309–338.

[33] R. J. Asaro, A. Needleman, Texture development and strain hardening in rate
dependent polycrystals, Acta Metall. 33 (1985) 923–953.

[34] M. Lewandowski, S. Stupkiewicz, Size effects in wedge indentation predicted
by a gradient-enhanced crystal-plasticity model, Int. J. Plast. 109 (2018) 54–
78.

[35] J. Korelc, Multi-language and multi-environment generation of nonlinear finite
element codes, Eng. Comput. 18 (2002) 312–327.

[36] P. Wriggers, Nonlinear Finite Element Methods, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 483–508.

[37] E. de Souza Neto, D. Peric, M. Dutko, D. Owen, Design of simple low order
finite elements for large strain analysis of nearly incompressible solids, Int J
Solid Struct 33 (1996) 3277 – 3296.

[38] J. Lengiewicz, Analiza wrażliwości dla zagadnień kontaktowych z tarciem,
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[53] M. Ryś, S. Stupkiewicz, H. Petryk, Micropolar regularization of crystal plas-
ticity with the gradient-enhanced incremental hardening law, Int. J. Plasticity
(submitted) (2022).

[54] T. Helfer, B. Michel, et al., Introducing the open-source mfront code generator:
Application to mechanical behaviours and material knowledge management
within the PLEIADES fuel element modelling platform 70 (????) 994–1023.

31


	Introduction
	Molecular Dynamics simulations
	Nanoindentation test

	Continuum model accounting for chemical disorder
	The crystal plasticity model
	The isotropic plasticity model
	The combined isotropic-crystal plasticity model
	The finite element simulation details

	Results
	Discussion
	Conclusions
	Size Effect
	Derivation of the velocity gradient for the isotropic part of the model

