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High-entropy alloys (HEAs) have attracted much attention for laser additive
manufacturing, due to their superb mechanical properties. However, their
industry application is still hindered by the high entry barriers of design for
additive manufacturing and the limited performance library of HEAs. In most
machine learning methods used to predict the properties of HEAs, their pro-
cessing paths are not clearly distinguished. To overcome these issues, in this
work, a novel deep neural network architecture is proposed that includes HEA
manufacturing routes as input features. The manufacturing routes, i.e., as-
cast and laser additive manufactured samples, are transformed into the One-
Hot encoder. This makes the samples in the dataset provide better directivity
and reduces the prediction error of the model. Data augmentation with con-
ditional generative adversarial networks is employed to obtain some data
samples with a distribution similar to that of the original data. These addi-
tional added data samples overcome the shortcoming of the limited perfor-
mance library of HEAs. The results show that the mean absolute error value of
the prediction is 44.6, which is about 27% lower than that using traditional
neural networks in this work. This delivers a new path to discover chemical
compositions suitable for laser additive manufactured HEAs, which is of
universal relevance for assisting specific additive manufacturing processes.

INTRODUCTION

The birth of the concept of high-entropy alloys
(HEAs) offers unprecedented freedom for designing
high-performance alloys.1,2 This provides a promis-
ing strategy to break the long-standing shackles of
compositional design in search of high-performance
metallic materials. HEAs are composed of multi-
principal elements, and differ from conventional

alloys. They have attracted interest in potential
structural applications due to their outstanding
mechanical properties.3–5 New routes, e.g., fabrica-
tion methods, composition modifications, or a com-
bination of both,6,7 remain necessary to obtain
HEAs with an excellent combination of properties.
Among the routes, laser-related additive manufac-
turing is a disruptive manufacturing technology to
make three-dimensional objects. Therefore, in
recent years, laser additive manufactured HEAs
have attracted considerable interest in both science
and engineering. However, there is still a challenge
to establish microstructure–performance linkages(Received May 25, 2023; accepted September 25, 2023;
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in additive manufactured HEAs. One of the most
important and well-studied performance metrics for
the evaluation of additive manufactured alloys is
the Vickers hardness.8,9 For conventional alloys
with specific compositions, there is still a wide
variation in hardness values measured experimen-
tally.10 The trial-and-error method remains one of
the most common approaches to overcome difficul-
ties in the selection for structural applications.11 On
the other hand, considering the existence of multi-
ple elements and the wide range of element concen-
trations, the composition space of HEAs tends to be
much wider than that of conventional alloys. The
presence of some expensive elements, e.g., tanta-
lum12 and hafnium,13 directly increases the cost of
HEAs, making complete exploration of all composi-
tions of HEAs difficult and expensive. Some compu-
tational methods, e.g., the calculated phase
diagram,14 density functional theory,15–17 molecular
dynamics,18,19 and other methods,20 have acceler-
ated the understanding of microstructure–perfor-
mance linkages in HEAs. It is still difficult to
quickly develop high-performance HEAs prepared
using laser additive manufacturing, considering
both the extensive unexplored space of compositions
for HEAs and unacceptable costs for modeling and
simulation.

Throughout the past few years, machine learning
(ML) algorithms, e.g., deep learning (DL),21,22 have
gradually gained popularity and attracted the
attention of many people in the field of materials
design. The algorithms can perform nonlinear fit-
ting between input and output data, construct
complex connections and rules, and predict material
properties.23–25 Based on the available experimental
data of HEAs, Uttam et al.’s work26 shows how to
forecast the yield strength of HEAs at the desired
temperature utilizing the random forest (RF)
regressor model. Islam et al.’s work27 provides a
neural network (NN) technique for predicting
phases. A variety of ML algorithms have been used
in Yegi et al.’s work,28 including support vector
machine (SVM) classifiers, artificial neural net-
works (ANN), logistic regression and decision trees
for HEA phase prediction, with ANN showing a
higher level of accuracy than the others. This shows
that combining deep neural networks (DNN) and
conditional generative adversarial networks
(CGAN) can increase the accuracy of NNs in
forecasting the phase of high-entropy alloys in Lee
et al.’s work.29 In the area of hardness of HEAs,
Chen et al.’s work30 shows a material design
approach that incorporates ML models with exper-
imental design techniques for obtaining HEAs with
large hardness in the Al-Co-Cr-Cu-Fe-Ni model
system. Based on RF models, the hardness of HEAs
with a single solid solution phase can be better
predicted than by physically modelled solid solution
hardening in Huang et al.’s work.31 Chen et al.’s
work32 shows that an SVM model utilized to predict
the enhanced hardness is proposed to promote the

design of HEAs. It shows that a model based on the
RF regression model is built to provide predictions
about the hardness and ultimate tensile strength of
complex concentrated alloys in Jie et al.’s work.33 It
shows that ML has been used to develop the solid-
solution strengthening model for HEAs, and the
model shows superior prediction performance when
predicting solid-solution hardness and strength in
Wen et al.’s work.34 Chang et al.’s work35 shows
that an ANN model can be used to predict the
hardness of nonequimolar AlCoCrFeMnNi, com-
bined with a simulated annealing algorithm, aiming
at optimal prediction results. Debnath et al.’s
work36 shows that several ANN models are
designed to predict the hardness and Young’s
modulus of HEAs with the input features of 11
chemical elements. Mahmoud et al.’s research37

shows that employing ANN models for HEA phase
and hardness prediction utilizing chemical compo-
sition as the input features is possible, and that the
accuracy of the ANN model to predict hardness is
higher than that of other ML regression models.
This shows that the hardness of refractory HEAs
can be forecast with input features, such as the
melting temperature, shear modulus, and mixed
entropy of alloys in Uttam et al.’s work.38 The use of
ML to predict the properties of HEAs shows signif-
icant potential, and its development is crucial. For
hardness prediction models, the most commonly
used input features are elemental parameters,
electronic parameters, thermodynamic characteris-
tics, physical properties, chemical characteristics,
and simulations of hand-designed parameters. How-
ever, different manufacturing routes yield different
hardness values for HEAs made up of the same
element group and composition. ML models have
not included manufacturing routes as part of the
input features in the prior literature.

Here, a DNN architecture that includes HEA
manufacturing routes as input features is proposed.
The manufacturing routes are transformed into the
One-Hot encoder, which is merged with elemental
parameters, electronic parameters, thermodynamic
parameters, and so on. This makes the samples in
the dataset provide better directivity and reduces
the prediction error of the model. In addition, data
augmentation with CGAN is employed, aiming to
obtain some data samples with a distribution sim-
ilar to that of the original data. These additional
data samples can further improve the accuracy of
the hardness prediction model. The impact and
significance of the eigenvalues are analyzed through
the hardness prediction results.

METHODS

Data Collection

Data collection was carried out using the pub-
lished literature.39–43 In previous studies,39–43 a
large number of Vicker hardness values for HEAs
fabricated by casting and laser additive
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manufacturing were collected. After preprocessing
the data, it takes the average hardness value when
the values are similar in the literature for HEAs of
the same composition and discards the literature
data with large deviations (relative error > 10%).
Furthermore, heat-treated and laser-remelted hard-
ness values were removed to eliminate the influence
of experimental errors and process treatments on
the predicted hardness of the DL model. Overall,
there are 324 HEAs in the dataset, of which 209 are
as-cast and 115 are laser additive manufactured.

The feature parameters commonly used for ML to
predict the hardness of HEAs are melting temper-
ature, valence electron concentration, mixing
enthalpy, mixing entropy, atomic size difference,
and electronegativity difference, which can indi-
rectly affect the hardness of HEAs due to the
formation of phases. The characteristic parameters
relevant to the mechanical properties are selected
as the shear modulus and the differences in shear
modulus, as shown in Table I.44–47

DNN

The DNN is derived from the traditional ANN by
expanding the number of neurons and widening the
number of hidden layers, which possess better
feature extraction and nonlinear fitting ability. In
this study, the feature parameters in Table I are
inserted into the input layer of the NN, and the
fabrication methods of the HEAs are also put into
the input layer together. As the fabricated methods
are discrete variables, they need to be transformed
into a One-Hot encoder and then merged with other

feature parameters. As shown in Fig. 1, the One-
Hot encoder ’01’ represents the fabricated method
as ’as-cast’, and ’10’ denotes the fabricated method
as ’laser additive manufactured’.

CGAN

Generative adversarial networks (GANs)48 are
DNN models for adversarial training that consist of
mutually independent data generators and data
discriminators. The generator randomly collects
noisy variables conforming to a Gaussian distribu-
tion and obtains the generated data through com-
plex nonlinear variations of the generative network.
The input of the discriminator consists of the
generated data and the real data, and the judgment
of the data source is completed after the training of
the discriminative network. After a large amount of
adversarial training, the discriminator is unable to
judge the source of the input data, i.e., the distri-
bution of the generated data is consistent with the
real data, and, finally, the purpose of dataset
enhancement is achieved. The objective function is
shown as:

min
G

max
D

VðG;DÞ ¼ Ex�PdataðxÞ½logDðxÞ�
þ Ez�PzðzÞ½logð1 �DðGðzÞÞÞ�;

ð1Þ

where E is the expected value of the objective
function, x the true data, z the random noise
variable, Pdata the true sample distribution, Pz the
false sample distribution generated by the genera-
tor, GðzÞ the false sample output by the generator,

Table I. Features selected in this study for the deep learning model44–47

Features Formulae

Atomic size difference
d ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ci 1 � ri=rð Þ2

s

Mixing enthalpy
DHmix ¼

P

n

i¼1;i < j

4Hijcicj

Mixing entropy
DSmix ¼ �R

P

n

i¼1

ci ln ci

Valence electron concentration
VEC ¼

P

n

i¼1

ciVECi

Melting temperature
Tm ¼

P

n

i¼1

ciTmi

Electronegativity difference
Dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ci vi � vð Þ2

s

Shear modulus
G ¼

P

n

i¼1

ciGi

Difference in shear modulus
DG ¼ max Ci � 1 � Gi

G

� �2
� �

� min Ci � 1 � Gi

G

� �2
� �

R the ideal gas constant, ci is the mole percentage of the ith element, and n represents the number of elements.
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DðxÞ the probability that the true data output by the
discriminator model is true, and DðGðzÞÞ the prob-
ability that the generated data output by the
discriminator model is true.

A GAN lacks efficiency due to the high model
freedom, high randomness, and uncontrollability of
generated data. The CGAN49 is based on the
traditional GAN by labeling the data with the
HEA manufacturing routes, so that the generated
data are constrained and the generator accepts
additional category information to generate data-
designated casting or laser additive manufacturing,
which improves the efficiency of the model. The
objective function is:

min
G

max
D

VðG;DÞ ¼ Ex�PdataðxÞ½logDðxjcÞ�
þ Ez�PzðzÞ½logð1 �DðGðzjcÞÞÞ�;

ð2Þ

where PdataðxÞ is the output of the discriminator
after adding the manufacturing method label, and
PdataðxÞ refers to the output of the generator after
adding the manufacturing method label. The output
structure diagram is shown in Fig. 2.

DL

The DL model used to predict values of Vickers
hardness for HEAs is a linear regression model, so
the last layer of output is selected as a linear output.
Thus, the loss function is chosen to be the mean
square error (MSE), as shown in:

MSE ¼ 1

m

X

m

i¼1

yi � ŷið Þ2 ð3Þ

where yi is the true value and ŷi is the predicted
value. The backpropagation algorithm is utilized to
train the NN, which involves comparing the actual
value to the predicted value and propagating the
error back to the previous layer, iterating and
updating the weight and bias parameters. The
process is then repeated until the output error
decreases below a particular criterion. Due to the
different ranges of each feature, the input must be
normalized by the Pandas library, which can speed
up the learning of the DNN, as indicated in:

Xnew ¼ 2 � Xi � Xmin;i

Xmax;i � Xmin;i
� 1; ð4Þ

where Xnew denotes the normalized data, Xmin;i is
the minimum value, and Xmax;i is the maximum
value. The normalization makes eigenvalues range
from � 1 to 1. With the DNN, the expanded number
of layers and the increased number of neurons
impose a higher computational burden on the
network’s training, while gradient disappearances
and gradient explosions are more likely to occur,
influencing the training of the model. The
approaches of learning rate decay, dropout, and
batch normalization are used to optimize the train-
ing process in this work. Table II summarizes the
hyperparameters.

Fig. 1. Schematic of the DNN model for hardness prediction of HEAs.
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RESULTS AND DISCUSSIONS

Data Analysis

Redundant and irrelevant features enhance the
training difficulty in the DL process. Therefore,
feature analysis and feature dimensionality reduc-
tion based on Pearson correlation coefficients are
presented in:50

r ¼

P

n

i¼1

Xi � X
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Xi � X
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Yi � Y
� �2

s ; ð5Þ

where Xi and Yi denote the two input feature

values, X and Y represent the mean values of the
two input features, and n is the sample number. In
total, correlation values range from � 1 to 1, with 0
indicating no correlation, 1 denoting a significant
positive correlation, and � 1 representing a signif-
icant negative correlation. Figure 3 shows the
correlation values computed from the features.

This means that there is no significant correlation
between the two features, as shown in Fig. 3, since
the values of the members are distributed between
� 0.69 and 0.70. Additionally, the matrix values do
not contain a zero value, indicating that a correla-
tion exists between any two features. The valence
electron concentration shows a positive correlation
with the shear modulus and a negative correlation
with the melting temperature, which means that,
when the valence electron concentration increases,
the shear modulus increases and the melting

temperature decreases. Generally, all features can
be utilized as inputs to a DL model, and no features
are redundant or irrelevant.

DNN Results

The dataset is usually divided into three parts in
the DL process: training, validation, and testing.
The test set does not appear in the model training
process and is only used for the final evaluation of
the model. This study utilizes the Keras framework
to construct DL models, dividing the dataset into a
60% training set, 20% validation set, and 20% test
set. With the gradient descent method, the training
and validation sets are combined to train the NN. To
obtain the optimal model with the appropriate
hyperparameters, 4-fold cross-validation is per-
formed to ensure that each data point in the
training set and validation set is trained and
validated. The performance of the model is evalu-
ated by the R2 score and mean absolute error
(MAE), as shown in:

R2ðy; ŷÞ ¼ 1 �

P

n

i¼1

yi � ŷið Þ2

P

n

i¼1

yi � yð Þ2
; ð6Þ

MAE ¼ 1

m

X

m

i¼1

yi � ŷið Þj j; ð7Þ

where yi is the true value, ŷi is the predicted value,
and y is the mean value.

DL-A is trained by directly inputting the element
parameters, thermodynamic characteristics, and
physical characteristics into the NN, and the result
is shown in Fig. 4a. DL-B is trained by transforming
the fabricated methods into the One-Hot encoder,
merging it with other feature values and feeding it
into the NN, as illustrated in Fig. 4b.

Figure 4a and b shows that, as the number of
training epochs increases, the error of both models
decreases. Due to the addition of a regularization
strategy such as dropout to the training process,
training accuracy is sacrificed to improve validation
accuracy, resulting in a smaller validation loss than

Fig. 2. Schematic of the CGAN model for hardness prediction of HEAs.

Table II. Hyperparameters of the DNN

Model DNN

Number of hidden layers 2, 4, 6
Number of hidden neurons 20
Minibatch size 8, 16, 32, 64
Learning rate decay coefficient 0.1, 0.5, 0.01, 0.05
Learning rate 0.01, 0.001, 0.0001
Dropout rate 0.3, 0.5, 0.7
Activation Relu, Leaky Relu
Epoch 100–200
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training loss. The training and validation curves of
DL-A exhibit a larger oscillation trend in Fig. 4a,
the final training result does not show convergence,
and a similar result was obtained in the study of
Uttam et al.38 As a result of different manufacturing
paths, the HEAs with the same element group and
composition show different hardness values, which
means that the label values differ. However, their
eigenvalues are the same, i.e., the mixing enthalpy,
mixing entropy, atomic size difference, etc. DL is an
algorithm that delivers data and answers to the DL
model, and the model searches for the pattern
between the data and the answers. It is important
to note that the same input features correspond to
multiple numerical labels of hardness, which affect
the performance of the model during backpropaga-
tion and cause up and down oscillations in error.
Mahmoud et al.’s research37 also proposed that the
manufacturing routes of HEAs should be taken into
consideration when predicting the hardness by
utilizing DL. Compared with DL-A, the training
and validation curves of DL-B tend to oscillate less
and eventually converge in Fig. 4b. In DL-B, the
manufacturing routes are transformed into the
One-Hot encoder and merged to the feature values,
and all the samples correspond uniquely to the
numerical labels of hardness, which eliminates the
mistake of multiple numerical labels for the same
input features. Therefore, the training curve of DL-
B is smoother than that of DL-A, and the loss value
on the validation set is less than that of DL-A. The
training performance for DL-B is superior to that of
DL-A.

The data samples in the test set are input into
DL-A and DL-B to test the final outcome of the
models, and the results are shown in Fig. 4c and d.
Figure 4c shows the prediction results of DL-A,
while Fig. 4d shows the outcome of DL-B. DL-A does
not distinguish between the manufacturing meth-
ods, so all the samples in the test set are repre-
sented in blue. The manufacturing methods are
separated in DL-B, where red samples are as-cast
and blue samples are laser additive manufactured.
According to the prediction results, the MAE value
for the hardness of DL-A is 61.4, and the MAE value
of DL-B is 47.4. The MAE value of DL-B is lower
than that of DL-A. The R2 score is calculated by
comparing the value of the mean value as a
benchmark with the prediction error to determine
whether it is larger or smaller than the mean
benchmark error, so the value should be as close to 1
as possible. The R2 values for DL-A and DL-B are
0.71 and 0.84, respectively. This indicates that DL-
B outperforms DL-A on the test set. This shows
that, when using DL to predict the hardness value
of HEAs, there need to be distinctions made in
manufacturing methods. Not all data samples can
be fed directly into a model for training.

CGAN Results

The CGAN model for data augmentation is built
by adding the manufacturing routes of HEAs (data
labels) to the generator and discriminator. The
architecture can generate two different types of
data and is trained by the existing 324 data
samples. First, n noisy samples are randomly

Fig. 3. Heatmap of the correlation matrix between the eight features.
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extracted from the Gaussian distributed data, PzðzÞ,
and the generated data are obtained after feeding
them into the generative network. Then, n samples
with labels are randomly taken from the real data,
PdataðxÞ, and input to the discriminator network
together with the generated data, and the discrim-
inator parameters are updated according to the
network loss values. After the discriminant network
parameters are updated and kept unaltered, n
samples are randomly obtained from the noise
distribution again and input to the generative
network, and the generator parameters are updated
based on the network loss values. The training
network parameters are shown in Table III.

In previous studies, the number of samples
manufactured by as-cast far exceeded the number
made by laser additive manufacturing. Addition-
ally, the number of samples influences the predic-
tion performance of the model; the more samples
that are collected, the more features the model
learns from them. Thus, CGAN-based data aug-
mentation can enhance the number of samples,
which can improve the model’s accuracy. After

training the model, the accuracy of the discrimina-
tor to distinguish real data and generated data is
shown in Fig. 5.

Data samples of HEAs are produced for both
manufacturing routes with the generator. The
result in Fig. 5 shows that the discriminator’s
judgment on generated data tends to increase as
the number of epochs increases, while the judgment
on real data tends to decrease. When the number of
trainings reaches 630, the discriminator’s accuracy
for real data is 0.48 and that for generated data is
0.49, which are both approximately 0.50. As the
amount of training continues to rise, the disparity
between the discriminator’s accuracy for real data
and that for generated data increases. This indi-
cates that the generator and the discriminator are
close to Nash equilibrium when the training times
reach 630, and the discriminator is unable to
determine whether the source of the input data is
the generated data or the real data, i.e., the
generated data are very similar to the real data.

The generated data were processed and analyzed.
The generated dataset contains some very similar

Fig. 4. MSE between the training set and validation set in (a) DL-A and (b) DL-B. Prediction results on the test set in (c) DL-A, (d) DL-B resulting
from as-cast (in red) and laser additive manufactured (in blue) samples (Color figure online).
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data samples, so only one set will be retained, and
the rest will be discarded. Simultaneously, the
generated data samples have been compared to
the data samples in the test set, and samples in the
generated data that are very similar to those in the
test set were eliminated, preventing the leak of the
test set resulting in model cheating. In summary, 67
generated data points were obtained from the two
manufacturing methods, including 41 from as-cast
and 26 from laser additive manufacturing. Figure 6
shows the distribution of the generated data.

As shown in Fig. 6, the radar graph illustrates the
distribution of the eight input features and hard-
ness for the real data and the CGAN-generated
data. Figure 6a shows the true data distribution,
which includes both casting and laser additive
manufacturing. The data generated by the CGAN
for the two methods are plotted in Fig. 6b depending
on the distribution of the eight design parameters.
These generated data were obtained via the gener-
ator rather than by random extraction from the
original real data. Thus, these generated data are

not the same as the original actual data. As depicted
in Fig. 6, the generated and real data exhibit
similar distribution trends, and the values of each
feature have been taken within the range of the real
data values, indicating that the two are similar. To
increase the number of samples within the training
set, these generated data were added to the training
set. The hardness values of HEAs are predicted by
DNN trained on 4-fold cross validation. Figure 7
shows the overall training model, and Fig. 8 shows
the result of CGAN and DNN.

As shown in Fig. 8a, the CGAN and DNN training
curve is smoother than the DNN training curve. The
increased number of samples allows the model to
extract and learn features from more data, while
more samples make the average error of the model
tend to be less sensitive. Nevertheless, in compar-
ison to the training error of the DNN, there is less
tendency to further reduce the final training error of
the CGAN and DNN. Figure 8b shows the model
performance on the test set, and Table III lists the
assessment metrics for the final three models.

The results show that the prediction of the DNN
model (DL-B) with the addition of the manufactur-
ing route labels as the One-Hot encoder is signifi-
cantly better than that of the normal DNN (DL-A),
due to the better directionality and attribution of
the samples. There will be no cases where the same
input feature values correspond to different hard-
ness values, causing the model to extract features
inaccurately. The MAE value of DL-A is 61.4, and
the R2 score is 0.71, while the MAE value of DL-B is
47.4 and the R2 score is 0.84. For the CGAN and
DNN model, the MAE value is 44.6, and the R2 score
is 0.85. Table IV presents the results in this work
and in related publications. Among the models,
different evaluation methods have been adopted,
but they can still provide an indicative role.

The improvement effect is smaller compared with
the DL-B model because the number of generated
data samples is short. The CGAN has certain
training sample requirements, and adequate data
are required to achieve network training conver-
gence. A Nash equilibrium can only be achieved by

Table III. Network parameters of the CGAN

CGAN Generator Discriminator

Number of input layer neurons (include 2 labels) 30 11
Number of hidden Layer 1 neurons 32 32
Layer 1 activation Leaky Relu Leaky Relu
Number of hidden Layer 2 neurons 64 64
Layer 2 activation Leaky Relu Leaky Relu
Number of hidden Layer 3 neurons 128 32
Layer 3 activation Leaky Relu Leaky Relu
Number of hidden Layer 4 neurons 32 16
Layer 4 activation Leaky Relu Leaky Relu
Number of output layer neurons 9 1
Output activation Tanh Sigmoid
Epoch – –

Fig. 5. Accuracy of the discriminator in distinguishing real and
generated data.
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optimizing the hyperparameters continuously when
the data volume is limited. Furthermore, in this
case, the generated sample size is expanded; how-
ever, it does not significantly increase the diversity
of the samples and is close to a simple replication.
Since the generated samples with highly similar
distributions to the test set are removed, the
number of samples available for data augmentation
is small, which leads to a slight improvement of the
DNN model for HEA hardness prediction. However,
Lee et al.’s work29 shows that employing CGAN and
DNN can substantially improve the ability to pre-
dict HEA phases. As it utilizes 989 samples as the
basis for the generation, the number and diversity
of the produced samples are guaranteed by suffi-
cient real data. Therefore, data augmentation by
CGAN on a smaller dataset has limited improve-
ment on the model prediction performance of DNN.

Relative Significance of Input Features

To verify the importance of the 8 feature values,
single factor evaluation experiments are conducted
by the CGAN-DNN architecture. For a total of eight

Fig. 6. Comparison of distribution for generated data and real data in the (a) real data, (b) generated data resulting from as-cast (in red) and laser
additive manufactured (in blue) HEAs (Color figure online).

Fig. 7. Overall training model of CGAN and DNN.
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Fig. 8. Performance of CGAN and DNN (manufacturing labels) in the (a) training result and (b) prediction result.

Table IV. Performance evaluation of different models

Model Evaluation metrics R2 score

DNN38 89.5 (MAE) –
ANN35 61 (MAE) –
SVM32 11% (MRE) 0.8
SVR-BPNN-KNN34 68 (RMSE) –
GA-ANN36 – 0.84
DL-A (in this work) 61.4 (MAE) 0.71
DL-B (in this work) 47.4 (MAE) 0.84
CGAN and DNN (in this work) 44.6 (MAE) 0.85
SVM-GP-ANN37 65.92 (RMSE) 0.89
BSS-RFR33 0.16 (NRMSE) 0.90

Fig. 9. Impact of the test set MAE when removing any feature
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experiments, one input feature is removed from
each experiment, and the remaining feature values
are fed into the neural network for training to
observe the degree of change in the average error of
the predicted hardness values for the HEAs. Fig-
ure 9 shows the variation in error across the eight
studies, indicating that each of the eight parameters
increases the hardness value error. Compared to
other eigenvalues, mixing entropy and valence
electron concentration tend to have a more signif-
icant effect on the error in predictions. As shown in
the high entropy effect, the increase in the mixing
entropy value can reduce the Gibbs free energy of
HEAs, facilitating stable solid solution phases to
form. A similar trend relationship exists between
phase and hardness,51,52 with the transition from
face-centered cubic to body-centered cubic corre-
sponding to a transition from low to high hardness.
It shows that the more severe lattice distortion that
the body-centered cubic structure exhibits allows in
more solid solution strengthening of it, which
enhances the hardness. In accordance with the
Hume-Rothery rules, the stability of a solid solution
is impacted by the number of valence electrons per
atom, and the phase of an alloy can be determined
by element valence. The results suggest that mixing
entropy and the valence electron concentration
regulate the phase formation of HEAs to influence
their hardness indirectly. Although the bond dis-
tances of different atom sizes vary, making the
lattice distortion more severe to boost the hardness,
electronic reaction impacts the bond strength of
elemental atoms to regulate the underlying
mechanical properties of HEAs.53 Furthermore,
different lattice architectures display different
atomic radii of the same atomic species, so as
opposed to atomic size differences, charge transfer-
ring what produces the alteration in atomic-level
pressure is the primary reason for solid solution
strength.54 It suggests that the simple parameters
related to electronegativity differences, entropy,
and radius, although not always decisive, are
strongly indicative in design of advanced HEAs for
laser additive manufacturing. Thus, an ideal com-
bination among such parameters can harden and
strengthen laser additive manufactured HEAs.

CONCLUSION

The industry application of additively manufac-
tured HEAs is hindered by the high entry barriers of
design for additive manufacturing and the limited
performance library of HEAs. In this work, to over-
come these issues, a novel deep neural network
architecture is proposed that includes high-entropy
alloy manufacturing routes as input features, i.e., as-
cast and laser additive manufactured samples. The
manufacturing routes are transformed into the One-
Hot encoder, which is merged with various physical
parameters. This makes the samples in the dataset
provide better directivity and reduces the prediction

error of the model. Data augmentation with condi-
tional generative adversarial networks has been
employed to obtain some data samples with a distri-
bution similar to that of the original data. These
additional added data samples overcome the short-
coming of the limited performance library of HEAs.
Based on the ML results, the simple parameters
related to electronegativity differences, entropy, and
radius, although not always decisive, are strongly
indicative in the design of advanced HEAs for laser
additive manufacturing. This work delivers a new
path to discover chemical compositions suitable for
laser additive manufactured HEAs, which is of
universal relevance in assisting the design of HEAs
for specific additive manufacturing processes.
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