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High entropy alloys (HEAs) represent highly promising multicomponent crystals that form concentrated solid
solutions (CSSs) and may violate traditional thermodynamic rules of mixing, ultimately leading to excellent
physical properties. For a deeper understanding, we investigate seven CSSs, including Co-Cr-Ni-Fe-Mn ele-
ments, at experimentally relevant compositions and conditions, through molecular simulations, and we use 1-1
comparisons to corresponding glass state characteristics, attained through rapid cooling protocols. We determine
the behavior of various structural features, including the configurational entropy for a set of CSSs in their
crystalline and vitreous states numerically. We employ swap Monte Carlo (MC) simulations, in combination
with the reversible scaling method, to efficiently compute the configurational entropy (Sconf), and show that
the entropic rule of mixing is not always adequate for predicting alloy formation. We study the stability and
formability of crystalline solid solutions, as well as glasses, while following the thermodynamics of Sconf. An
apparent entropic similarity between CSSs and corresponding glasses leads us to use a Kauzmann-like ansatz,
relating the CSSs at Sconf → 0 with the emergence of a CSS order-disorder transition, at temperature TOD. In the
context of glasses, a comparison between kinetic and thermodynamic fragilities allows the association of sluggish
diffusion onset to a drop in Sconf at TK . Analogously, we classify CSSs as “strong” or “fragile” in the sense of
their ability to migrate across CSS crystal configurations at high temperatures, distinguishing its formability. We
argue that the magnitude of TOD may be an excellent predictor of CSS single-phase stability, which appears to
scale with well-known HEA predictors, in particular we notice that VEC and TOD have in relation to the others a
significantly large Pearson correlation coefficient, much larger than most other observables (except �Hmix).

DOI: 10.1103/PhysRevMaterials.7.025603

I. INTRODUCTION

The synthesis of random single-crystal phase alloys con-
taining equiatomic or near equiatomic concentration, the
so-called concentrated solid solutions (CSSs), has opened the
door for a completely new kind of material with outstand-
ing properties [1–8], such as hardness values from 1.27 to
10.79 GPa [9], corrosion resistance as good as stainless steel,
and excellent oxidation resistance, up to 1400 K [10]. The sta-
bility of these CSSs were originally associated with a design
strategy, which benefits the maximization of the configura-
tional entropy, Sconf. Notwithstanding, this strategy has led
to successful random single solid solutions only in a reduced
number of compositions [11–13], where the role of Sconf is still
unclear [14,15]; moreover, nonequiatomic compositions have
proven to be more stable under similar conditions [16–20].
Thus, the validity of Sconf to determine stability in CSSs,
as well as the question of whether better predictors of CSS
stability exist are still debated topics [21,22].

In contrast, amorphous metallic solids, also known as
metallic glasses (MGs), have been studied since the sec-
ond half of the 1990s [23], and commonly exhibit unusual
properties, such as remarkable mechanical strength and stiff-
ness, thermoplastic forming, high restitution coefficient, and
soft magnetic properties [24–26]. In this framework, the

configurational entropy is associated with the number of min-
ima of the system’s energy landscape [27]. Thus, the viscous
slowing down appearing in the supercooled liquid when the
temperature approaches that of the glass transition (Tg) is a
consequence of the decrease in the number of configurations
that the system is available to sample. This interpretation is the
basis of the Adam-Gibbs (AG) equation [28], a mathematical
expression that gives an exponential relation between Sconf

and kinetic properties (such as the self-diffusion coefficient
[29,30], the relaxation time [31,32], or the viscosity [28,33])
providing an explanation of the dynamic behavior in thermo-
dynamic terms.

MGs and CSSs have been synthesized based on three sim-
ilar design criteria. First, the number of species, usually three
or more with one of them as a principal element in MGs
and equiatomic composition in the case of CSSs. Second,
the atomic mismatching, up to 12% in MGs and the atomic
size difference δ in CSS, and third, combination of thermo-
chemical parameters such as entropy of mixing (�Smix),
melting points (Tm), the enthalpy of mixing (�Hmix), or va-
lence electron concentration (VEC). However, these empirical
criteria have a number of limitations, the most pronounced
of which is that temperature plays an important role to deter-
mine phase stabilities of solution phases, but most of these
parameters do not consider the effect of temperature. Here,
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physically motivated and novel criterion, based on exten-
sive investigations of thermomechanical aspects of CSSs in
various compositions. We compute numerically the config-
urational entropy of a quinary Co20Cr20Ni20Fe20Mn20 alloy,
as known as Cantor alloy [12], as well as seven variants of
this alloy. We chose the aforementioned alloys for three main
reasons: (i) CSSs based on the Cantor alloy have been system-
atically used to explore the properties of CSSs [12–14,22,34–
38], (ii) the possibility to obtain these samples experimentally
in the glass state through the electrosynthesis of salts [37],
and (iii) to apply our methodology to real systems. Our results
allow us to establish a relation between the sluggish diffusion
in solid solutions with the drop in the configurational entropy
in an analogous manner as occurs in the glassy systems. Using
the glass ansatz equation for the configurational entropy in our
results for the CSS we determine the order-disorder transition
temperature in solid solutions, TOD, and then we show that TOD

appears to scale with well-known HEA predictors, in partic-
ular we notice that VEC and TOD have a noticeable Pearson
correlation coefficient. In this way, we propose that TOD may
be an appropriate predictor of phase stability in HEAs.

In this paper, by using molecular-dynamics simulations of
multicomponent alloys, we develop an analogy between CSSs
and glasses, by identifying an apparent CSS order-disorder
transition temperature TOD as an excellent predictor of CSS
thermomechanical stability. A key behind thermomechanical
stability is rooted in the connection of thermodynamically
accessible configuration dynamics. In particular, the dramatic
slowing down in supercooled liquids might be explained in
entropy terms [30], and possibly analogies may be extracted
for the behavior of CSSs and HEAs.

The reminder of the paper is organized as follows: In Sec. II
we present the simulation setups employed to generate the
glass and solid solution structures. Section III describes the
methodology we used in order to compute the configurational
entropy. In Sec. IV we discuss our results, particularly the
order-disorder transition in solid solutions and the similarity
in the behavior of the configurational entropy in the “orthogo-
nal” crystal and amorphous states. Finally, Sec. V summarizes
our conclusions and future perspectives of this work.

II. SIMULATION SETUP

The interatomic interactions for the Co-Cr-Fe-Ni-Mn-
based alloys are described by a second-nearest neighbor
modified embedded atom method (2NN-MEAM) [39] pro-
vided in Ref. [40]. We simulate different element alloy
combinations in equiatomic compositions of these elements.
Excluding the five-element alloy (for which N = 6000),
the simulation cell consists of N = 6336 atoms in a cu-
bic box with periodic boundary conditions (PBCs) in all
three dimensions. Our simulations were carried out in the
molecular-dynamics (MD) open code LAMMPS [41], using
a time step �t = 1 fs. To begin with, we define an initial
face-centered cubic (fcc) supercell to be filled with ran-
domly distributed atoms. Once the initial structure was created
we equilibrated it at T = 300 K during 2 ns. The glass
state was obtained through the melting of the crystalline
structure, heating the system from 300 to 2800 K and af-
ter doing a quenching using a cooling rate κ = 100 K/ns.

We saved configurations every 50 K during the heating
and cooling processes. Each of the aforementioned config-
urations were equilibrated for 1 ns in order to obtain the
dynamic and thermodynamic properties. The heating and
cooling processes were performed by integrating the Nosé-
Hoover equations [42,43] with damping parameters τT = 2 fs
and τp = 5 ps for the thermostat and barostat, respectively.
All results were obtained keeping the external pressure p = 0.
The equilibrated samples were changed to the NV T ensemble
and the simulation box was rescaled to the average equilib-
rium volume in the N pT ensemble which gives an external
pressure p = 0. Finally, for the Monte Carlo (MC) swaps, we
randomly choose two different particles with different types
and we estimate the energy cost to exchange them [44]. The
moves are accepted according to the usual Metropolis crite-
rion, guaranteeing detailed balance.

III. PROTOCOL AND METHODS

A. Reversible scaling

We have numerically computed the entropy (S) of the sys-
tem through its free energy (G). Since both variables depend
on the entire volume of the phase space, standard MC or
MD simulations cannot be used to measure them and special
methods are necessary. Here, we have employed the reversible
scaling (RS) method, which is based on the creation of a
specific path defined by a scaling factor ζ (t ) in the potential
energy of the interest system [45]. For the case of the 2NN-
MEAM we have Uscaled = ζ (t )UMEAM and the free energy is
determined using the RS formula [45–47]

G(T ) = GMEAM(T0)

ζ (t )
+ 3

2
NkBT0

ln ζ (t )

ζ (t )
+ W (t )

ζ (t )
, (1)

where GMEAM(T0) is the free energy of the system at a specific
reference temperature T0, T is the final temperature defined by
T = T0/ζ (t ), and

W (t ) =
∫ ts

0
dτ

dζ

dτ

∣∣∣∣
t

UMEAM(R(τ )) (2)

is the irreversible work done to bring the system from T0 to T ,
and R(t ) is a vector containing the position of all the atoms at
the instant t .

This method offers the advantage to provide the free energy
G(T ) in a wide range of temperatures by performing only one
(MD or MC) simulation. However, two conditions should be
met in order to apply the RS method. First, GMEAM(T0) has
to be known beforehand and, second, the dissipative error
generated by the dynamic work must be eliminated by a
hysteresis process [47]. Computing GMEAM(T0) will depend
on the specific state of the system of interest, for the glass
and the solid solution the details are presented in the next
sections. Here we focus on how to determine W (t ). Equa-
tion (1) express the fact that computing G(T ) is equivalent
to the problem of computing the irreversible work in Eq. (2)
when the parameter ζ (t ) varies from T0 to T = T0/ζ (t ). In
general the functional form of ζ (t ) is to be chosen wisely to
reduce the dissipative error generated by the nonequilibrium
process. Notwithstanding, for glasses ζ cannot vary arbitrarily
during the simulation in order to keep a fix cooling rate. Thus,
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to find a temporal-functional form to ζ that preserves the
cooling rate constant we impose the condition:

dT

dt
= κ, (3)

where κ is the cooling rate at which the system will be
quenched.

Remembering that the temperature in the RS method is
given by T = T0/ζ , we have dT = d (T0/ζ ), and Eq. (3) can
be integrated to obtain

ζ (t ) = T0

T0 + κt
. (4)

The initial temperature T0 we chose as T0 = 300 K and the
cooling rate κ is positive and negative for the crystal and
liquid, respectively. Since we are interested in calculate the
free energy in the supercooled regime (between [1000–1500]
K) we have

1500 K = 300 K

ζ
.

Then ζ will temporally evolve from 1 to 0.2 according to
Eq. (4). Finally, W (t ) is computed using Eq. (2). The integra-
tion involves instantaneous values of dζ (t )

dt UMEAM. Therefore,
the work performed during the scaling is irreversible in nature
and provides two types of errors that originate in simulation
limitations: First, a statistical error associated with the fact
that the integral of Eq. (2) depends on the initial conditions
of the irreversible process, due to the practical presence of
a finite upper time limit. Second, a systematic error arises
from the dissipative entropy production generated by the non-
quasistatic change of parameters during the integration. This
entropy production causes that the mean of the irreversible
work distribution shifts with respect to the value of the ideal
quasistatic work Wqs. Since in simulations, we cannot deal
with infinite times, these two errors naturally appear in our
calculations. Fortunately, in practice, the convergence of the
finite width distribution to the ideal one is remarkably fast [45]
and standard simulations with length comparable to typical
equilibrium MC or MD simulation are enough to considerably
reduce both errors. Moreover, if the simulations are performed
slow enough to guarantee the validity of the linear response,
the energy dissipation will be the same if we perform the
driving process from T0 → T or from T → T0 [47]. Thus, the
quasistatic work and the dissipative energy can be estimated
by

Wqs = 〈W〉T0→T − 〈W〉T →T0

2
,

�Ediss = 〈W〉T0→T + 〈W〉T →T0

2
,

(5)

where 〈·〉 represents a mean of independent initial configura-
tions.

This strategy is always applicable if the system does not
undergo a phase transition and the path T0 → T leads to
identical work (in absolute terms) as T → T0.

FIG. 1. Schematic representation of the calculation of Stot and
Svib using the RS method. GMEAM(T0) is represented by the red and
blue stars for solid and liquid phase, respectively. The yellow region
is the supercooled regime where Sg

conf = Stot − Svib.

B. Configurational entropy I: Glass state

The configurational entropy in the glass state (Sg
conf) is

obtained by applying the definition [29,48,49] where Stot is the
total entropy and Svib is the thermal vibrational contribution
computed in the neighborhood of a reference configuration
[50,51]. These quantities are obtained from the free energy
using the thermodynamic relation

Sα = Gα − Hα

T
, (6)

where α = vib, tot stands for vibrational or total, and H and
T are the enthalpy and the absolute temperature, respectively.

To apply the RS method to compute the free energy, we
have to determine the reference free energy GMEAM(T0) in the
solid and liquid phase. This is done by thermodynamic inte-
gration or adiabatic switching choosing wisely the reference
system. We use the Einstein crystal (collection of harmonic
oscillators) and the Uhlenbeck-Ford model (UFM) [52,53] as
reference system in the glass and liquid state, respectively. It
is important to note that these reference systems are only used
to determine the reference free energies at low temperature,
(T0 = 300 K) for Svib [50,51,54,55] and high temperature
(T0 = 2300 K) for Stot [52,53,56]. We only measure Sg

conf
in the supercooled regime where we can separate Stot in
Svib + Sconf.

Figure 1 shows a schematic representation of the numerical
computation of Stot and Svib through the RS method. In the
crystalline solid phase G0

MEAM (red star in Fig. 1) the atoms
are fixed in the lattice structure and they can only move around
its equilibrium position. Thus, only the vibrational degrees of
freedom are taking into account during the computation. In
the liquid phase, on the other hand, G0

MEAM (blue star in Fig. 1)
contains information on vibrational and configurational con-
tributions since atoms are free to move. In the supercooled
regime (yellow region in Fig. 1) the configurational entropy is
obtained as Sg

conf = Stot − Svib.

C. Configurational entropy II: Solid solution

Computing the configurational entropy for a solid solution
(SSS

conf) requires preserving the lattice structure and allow the
atoms to explore different configurations simultaneously. This
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FIG. 2. Schematic representation of the calculation of the con-
figurational entropy in the solid solution phase. At high temperatures
SSS

conf = Smix (dashed black line). However, when the temperature is
below Tm, SSS

conf deviates from the ideal value due to segregation or
precipitation.

kind of calculation cannot be performed using MD simula-
tions where the atoms in a solid are fixed and they move
only around their equilibrium position. Therefore, to compute
SSS

conf we employ the MC swap method. To do so, we set a
fcc crystalline structure at fixed volume corresponding to the
equilibrium volume obtained at T = 900 K and p = 0 bars.
Then we perform a series of MC swaps consisting in randomly
choosing two atoms and exchanging their types. The moves
are accepted or rejected according the Metropolis criterion,
guaranteeing the detailed balance. Since the MC swaps only
involve redistribution of the atomic population, the lattice
structure is preserved for any temperature. Because the system
remains crystalline even when T → ∞, thus we can use as
the reference free energy GMEAM(T0 = ∞) = −T Smix. This
highlights another of the advantages of use the RS method,
we can map the problem of determining free energy for an
infinite interval of temperature onto a problem of finding the
free energy for a finite interval of the scaling parameter ζ (t ).
The logarithmic term in Eq. (1) corresponds to the kinetic
degrees of freedom, and must be omitted when we calculate
Sconf for the SS (SSS

conf) since only configurational changes are
considered. In Fig. 2, we present a schematic representation
of the temperature evolution of SSS

conf obtained by means of RS
method performing MC swaps. The deviation in the ideal Smix

is associated with a degree of order in the solid solution due
to segregation, precipitation or spinodal decomposition.

IV. PHASE STABILITY OF THE CANTOR ALLOY

Let us focus first on the thermodynamic evolution of the
Cantor alloy during a heating and cooling process. Figure 3(a)
shows the volume evolution as a function of temperature
between 300 and 2500 K. During the heating process (red
points) we found the mechanical stability limit of the fcc
structure being T mech

m = 1900 K at the Lindemann’s param-
eter δ = 0.12. The Cantor alloy does not present volume
discontinuity by quenching the liquid (blue points), and the
glass transition temperature,Tg = 1050 K was determined by
using the Kuwabcheski relations [57] in the same way as
in Refs. [58,59]. The thermodynamic melting point (Tm) is
given by the temperature at which the liquid (Gtot) and crys-

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 3. Thermodynamic properties of the
Co20Cr20Ni20Fe20Mn20 Cantor alloy (a) Volume as a function
of the temperature during the heating (red) and quenching (blue)
processes. (b) Absolute Gibbs free energy for the solid (red) and the
liquid (blue) phases. The thermodynamic melting point is obtained
as the crossing between Gtot and Gvib. (c) Entropy as a function of
temperature obtained by means of the respective free energy. The
values of Sexp

vib were taken from the experimental measures reported
in Ref. [61]. (d) Temperature evolution of Sg

conf in the supercooled
regime [yellow region in panels (a) and (c)]. The dashed line
are obtained by fitting the computed data (see main text). (e), (f)
Configurational free energy and entropy for the solid solution and
their temperature dependence. Even at high temperatures SSS

conf is far
form the ideal Smix value.

talline (Gvib) phase have the same free energy [Fig. 3(b)]. We
determined the crossing temperature to be Tm = 1470 K. This
value even being 5% lower from the experimental one, T exp

m =
1553 K obtained by Wu et al. [60] by differential scanning
calorimetry is still quite accurate and we use it as a first test of
the validation of our results. Figure 3(c) depicts the crystalline
and liquid entropy as a function of temperature obtained by
means of Gvib and Gtot, respectively. Again the computed
values are in a good agreement with the experimental data
[61] [black line in Fig. 3(c)], providing our second validation
test. Since during our simulations we used PBC the system is
allowed to be superheated (T mech

m > Tm) and the temperature
windows to which we are able to measure Sconf is higher than
in experimental procedures. Thus, we define our supercooled
regime between T mech

m and Tg [yellow region in Figs. 3(a) and
3(c)]. Figure 3(d) shows the Sg

conf as a function of temperature
in the supercooled regime. For values below Tg the value
of Sg

conf becomes almost constant starting the nonequilibrium
glass regime. Here, we focused in the (meta)equilibrium be-
havior therefore, we did not include values below Tg.

The entropy crisis predicted by Kauzmann happens when
Sg

conf = 0 for T > 0. Since we do not compute Sg
conf below Tg,

we fit our data according to [32,62,63]

T Sg
conf = A(T − TK ) + B(T − TK )2, (7)

025603-4



VIEWING HIGH ENTROPY ALLOYS THROUGH GLASSES: … PHYSICAL REVIEW MATERIALS 7, 025603 (2023)

TABLE I. Relevant temperatures during the cooling and heating
of the alloys. Experimental melting temperatures (T expt

m ), 2NN-
MEAM melting temperature (Tm), glass transition temperature (Tg),
Kauzmann temperature (TK ), and order-disorder temperature (TOD ).

Alloy T expt
m (K) Tm (K) Tg (K) TK (K) TOD (K)

CoCrNiFeMn 1553 1470 1050 886 799
CoCrNiMn 1489 1465 950 768 605
CoCrNiFe 1695 1730 1150 949 681
CoNiFe 1724 1740 1050 831 770
FeNiMn 1473 1500 900 768 612
FeNiCr 1690 1150 1000 712
FeNi 1703 1670 1150 904 818

where A and B are associated with the thermodynamic
fragility and TK is the so-called Kauzmann temperature—a
temperature to which the liquid experience an ideal glass of
unique configuration resulting in a zero configurational en-
tropy. This fitting function allows us extrapolate our results
to deeply supercooled states and estimate the thermodynamic
glass transition at TK .

The temperature evolution of the configurational entropy
in the CSS is shown in Fig. 3(f). SSS

conf was obtained in this
case by computing numerically ∂〈GSS

conf〉/∂T where 〈·〉
denotes a mean value over uncorrelated samples of the con-
figurational free energy [Fig. 3(e)]. From the evolution of SSS

conf
we notice that, first, SSS

conf tends to deviates from the ideal Smix

[dashed line in Fig. 3(f)], even at very high temperatures—
higher than the melting point. As such, the value of Smix is
just an upper limit difficult to reach in practice [22,64], and
second, the behavior of SSS

conf as a function of the temperature
is similar to the one obtained for the glass state [Fig. 3(d)].
The overall trend of SSS

conf is similar to those computed in
recent studies of CSS based on the cluster-variation method
[22,64–66]. For temperatures below 900 K the simulation time
required to keep the system in equilibrium exceeds our current
computational resources. Therefore, motivated for the simi-
larity temperature dependence of Sconf in the CSS and glass
states, we extrapolated our data from SSS

conf using the same
fitting equation that we employed for the glass state. However,
in this case we associate the TK parameter—associated with a
unique glass configuration—with an order-disorder transition
temperature TOD at which short-range order appears in the
CSS alloy. We note in passing that such a Kauzmann-like
ansatz works well. Thus, when T < TOD the solid solution
is not random anymore and as a consequence, e.g., some
segregation, precipitation, or spinodal decomposition should
appear in the system.

V. ORDER-DISORDER TRANSITIONS

We extend our study for a subset of Cantor CSSs in which
quenching the liquid leads to a glassy state. For each alloy we
compute the thermodynamic melting point Tm, the glass tran-
sition temperature Tg, the Kauzmann temperature in the glass
state TK , and the order-disorder transition temperature TOD for
their CSS counterpart. These temperatures are summarized in
Table I .

(a)

(b)

FIG. 4. Temperature dependence of configurational entropy for
a subset of Cantor alloys (a) Kauzmann plot of the glass configu-
rational entropy as a function of T . Both axes are normalized by
the thermodynamic melting temperature Tm. The extrapolation to
lower temperatures suggest a ideal glass transition with Sg

conf = 0.
(b) Kauzmann-like plot of SSS

conf as a function of temperature for the
same set of alloys in the crystalline phase. The extrapolation to lower
temperatures was obtained using the same fitting equation as for Sg

conf,
we associate the vanishing in SSS

conf with the order-disorder transition.

Figure 4(a) shows the so-called Kauzmann plot for all the
glasses that we obtain, i.e., Sg

conf normalized by its value at Tm

as a function of the normalized temperature T/Tm. The solid
lines were obtained by fitting the values of Sg

conf with Eq. (7).
The Kauzmann temperature of these alloys is in the interval
[1000–760] K. In the same spirit of a Kauzmann-like plot in
Fig. 4(b) we present SSS

conf of these alloys normalized by their
value at Tm as a function of the normalized temperature T/Tm

and once more we fit the data using Eq. (7), but identifying
TK as the order-disorder transition temperature TOD. With the
value of TOD we are capable to define a stability temperature
limit of the random solid, i.e., for T < TOD the random solid
solution decomposes in more ordered phases regardless of the
number of components. Thus we are capable of determine
the thermodynamic stability of the crystalline random solid
solutions based on the similar behavior of Sconf in the CSS
and glass states.

To demonstrate the validity of our approach we estimate
the TOD explicitly in a binary FeNi CSS by computing the
short-range-order (SRO) parameter α and the configurational
enthalpy Hconf when the system is annealed at different tem-
peratures. To do so, we set a CSS of NiFe consisting of N =
500 atoms corresponding to the equilibrium volume obtained
at p = 0 bars and T = 300 K. Then we perform a series of
MC cycles, when every cycle consists of N/2 = 250 attempts
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(a)

(b)

FIG. 5. (a) Pairwise short-range order parameter α2 at different
annealing temperatures. (b) Configurational enthalpy obtained by
pure MC swaps at different temperatures. The order-disorder tran-
sition is represented by the dashed black line in the plot.

of exchanges. We perform a series of MC cycles (8 × 105

for T < 1000 K and 8 × 105 for T � 1000) on a relatively
fine grid over a temperature interval of 1200 K. The SRO
parameter was computed by [22]

αn
i j = 1 − Pn

i j

Cj
, (8)

where n means the nth-nearest-neighbor shell of the central
atom i, Pi j is the average probability of finding a j-type atom
around an i-type atom in the nth shell, Cj is the average
concentration of j-type atom in the system.

Figure 5 shows the measured configurational enthalpy and
the second-nearest neighbor SRO parameter for Ni-Fe pair.
The abrupt change in both Hconf and α2

Ni−Fe indicate an order-
disorder transition occurring in the system. We estimate a
TOD = 830 K as the temperature at which ∂Hconf/∂T presents
a discontinuity (vertical black line in Fig. 5). To verify the
volume effect, we perform an analogous calculation but using
an equilibrium configuration corresponding to the equilibrium
volume at T = 0 K, which yields a smaller volume than the
one at T = 300 K. The resulting TOD is just 2% larger than
the one measured at T = 300 K, thus we conclude that the
chosen value for the volume is irrelevant to our conclusions.
The measured SRO parameter computed by this method is in
good agreement with the one we previously obtained using
the glass ansatz equation. Therefore, we conclude that our
approach can be used to determine TOD in CSS.

(a)

(b)

FIG. 6. (a) Kinetic Angell plot of the self-diffusion coefficient
D against the reduced temperature Tg/T for seven Co-Cr-Fe-Ni-Mn
based MPEAs. we normalize the D for its value at Tg to ease com-
parison between the alloys. (b) Thermodynamic Angell plot of the
reduced configurational entropy Sg/Sg

conf as a function of Tg/T . Here
Sg stands for Sg

conf(T = Tg).

VI. KINETIC AND THERMODYNAMIC FRAGILITIES

Turning to the glass state, we explore the relation between
the dynamics and thermodynamics of these alloys during
cooling by means of their fragilities. To begin with, we cal-
culate the mean squared displacement defined as

�(t ) = 〈|ri(t ) − ri(0)|2〉, (9)

where ri is the position of the particle i at time t . The diffu-
sion coefficient D is obtained from the Einstein relation: D =
limt→∞ �(t )/6t . The simulation is performed at sufficiently
large t to reach the diffusion regime. The kinetic fragility is
obtained from its definition as

mk = ∂ log D−1

∂
(
Tg/T

)
∣∣∣∣∣
T =Tg

. (10)

The thermodynamic fragility, on the other hand, is given by

mt = ∂
(
Sg

conf

)−1

∂
(
Tg/T

)
∣∣∣∣∣
T =Tg

. (11)

Figure 6 depicts Angell plots for both D [Fig. 6(a)] and Sg
conf

[Fig. 6(b)], normalized by their values at Tg. We normalize
D∗ = D/D(Tg) to account the shift in the values at Tg and to
ease the comparison between systems. The kinetic (mk) and
thermodynamic (mt ) fragilities decreases faster than linearly
(strong), presenting a super-Arrhenius (fragile) behavior. The
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two fragilities mk and mt present a pretty similar values—
between 14 and 26—and behavior with the exceptions of
CoNiFe and NiFeCr. However, this difference has already
been reported by Richet [67,68] and seems to result from the
fact that the vibrational entropy of glass state is lower than
that of the SS. Nonetheless, several results pointed out that
the dramatic drops in Sconf are related with the decreasing of
the configurational entropy and therefore the thermodynamic
fragility [30,69,70]. The drops in entropy reduce the kinetic
pathways and lead to the dramatic slowdown in the dynamics.
From the similarities in the behavior of the two fragilities
we can associate the slowing in the diffusion (kinetics) with
a reduction in the number of accessible glass state that the
system can reach, and therefore, the diminution in Sg

conf (ther-
modynamics). Based on the thermal evolution of Sg

conf and
SSS

conf, we can classify CSSs as strong or fragile in the sense
of their ability to migrate across the solid solution configura-
tions at high temperatures. Thus, we can use a fragile-strong
criterion for the stability of CSS, mainly arguing that when
the entropy drop is faster so the stability of the random solid
solution is reduced. Moreover, since in glass the kinetic and
thermodynamic properties are related, we suggest that the
diffusion in these CSSs should be similar to the glasses in-
fluenced by T as suggested by the temperature dependence of
SSS

conf and the Kauzmann-like fit in Sg
conf. This is because both

configurational entropies measure the number of accessible
configurations (N ) in the system, but with SSS

conf restricted at
specific position in the lattice. In other words, the thermody-
namic properties of SS could be related with kinetics as is in
glasses. Thus, a thermodynamic-kinetic relation in CSS would
provide an explanation for some open questions in the HEA
community as the sluggish diffusion in HEA, or a vanishing
configurational entropy in CSS at finite temperature. For the
first case, experiments [71–73] and simulations [40,74] have
shown that CoCrNiFeMn presents a slower diffusion than
Fe-Ni-Cr alloys at equal homologous temperature. As we can
see in Figs. 6(a) and 6(b), the NiFeCr, NiFeMn, and NiFe
present a fragility index higher than CoCrNiFeMn resulting
in a smaller drop in Sg

conf, reducing the kinetic pathway, and
leading to a slower diffusion. Moreover, among the five el-
ements Co and Ni have the slower diffusion [40], thus the
alloys that contain these two elements present as expected a
slower diffusion.

Figure 7 depicts the values of the normalized (with respect
to their respective maximum value) TOD compared with other
usual HEA predictors as VEC, δ, �Hmix and the shear mod-
ulus mismatch (δG). We also included the Pearson correlation
coefficient (ρ) for all observables in relation with TOD and we
notice that VEC and TOD have a significantly large ρ > 0 (0.5)
compared with most other observables (except �Hmix). This
promotes future work on the possibility that TOD can function
of an effective predictor of stable HEA phases.

Retrospectively, recent simulation results based on MC
simulations have shown a disorder-to-order transition when
the annealing temperature decreases, suggesting an “ideal”
SS structure for CSS. This transition might be related with
spinodal decomposition or the appearing of more ordered
phases due to segregation or precipitation of some elements in
the alloy [75]. Two typical example of this phenomenon were
reported by Li et al. in a ternary CoCrNi and Santodonato et al.

FIG. 7. Normalized values of the order-disorder transition (TOD),
valence electron concentration (VEC), atomic size mismatch (δ),
enthalpy of mixing (�H ), shear modulus mismatch (δG), and the
Pearson correlation coefficient (ρ ) in relation to TOD.

[5] in a quinary CoCrNiFeAl HEA having this disorder-order
transition approximately at 650 and 800 K, respectively, and
coinciding with the vanishing values at TOD that we obtain for
similar alloys (see Table I).

VII. CONCLUSIONS AND PERSPECTIVES

We have presented a systematic study of the config-
urational entropy evolution during a heating and cooling
processes for several multicomponent alloys in glassy and
solid solution states and possible analogies that may be ex-
tracted between glassy and CSS phases. Our methodology
reproduces well the thermodynamic melting point experimen-
tally reported for these alloys, ensuring that the 2NN-MEAM
potential describes well the interatomic interactions. We re-
port a comparison of the temperature dependence of the
configurational entropy in multicomponent alloys in crys-
talline and vitreous states, as well as the deviation of SSS

conf
from the ideal Smix based on purely thermodynamic ap-
proaches. The difference between Smix and SSS

conf also shows
that even at very high temperatures (close to Tm) entropy might
not be used as a criterion of single phase stability of HEAs.
We develop an analogy between CSS and glassy phases to
develop a novel definition of the order-disorder transition in
CSS through a singularity in the CSS configurational entropy.
In this way, the order-disorder CSS transition temperature TOD

was estimated for several alloys and was shown to behave
relatively similar to VEC, a commonly used HEA stability
predictor. It is important to remark that computing TOD re-
quires special computational methods and a correct choice of
the interatomic potential. However, the definition and rele-
vance of TOD to CSS formability provides a novel physical
viewpoint for understanding of CSS thermodynamics.

In addition, we evince a kinetic and thermodynamic con-
nection in the glass state and we hypothesize that it holds,
analogously, in CSS states, with respect to kinetic migration.
Motivated by glass phenomenology, such a relation for CSS
allows us to explain diffusion and phase stability in terms of
Sconf and TOD. Our results also lead us to conclude that Sg

conf
might not be considered as the only quantity to account for the
critical slowing down in the supercooled regime.

The RS method employed in this work has been shown
to be very efficient to calculate the configurational entropy in
both the crystal and glass states, with results that are in good
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agreement with experimental findings of these HEAs. Given
the lack of simulation studies of Co-Cr-Fe-Ni-Mn HEAs in
their glass state, our work paves the way to deepen the theo-
retical understanding of the order-disorder transition in solid
solutions, as well as the glass transition in metallic glasses,
mainly considering that they may be excellent candidates to
explore ultrastable HEAs or/and metallic glasses [76], and
the validity of the Adam-Gibbs equation as well as possible
generalizations [77,78]. Further mechanical, dynamical, and
thermal analysis of the CSS and glass states obtained here will
be performed in a future work.
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