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Machine learning dislocation 
density correlations and solute 
effects in Mg‑based alloys
H. Salmenjoki 1, S. Papanikolaou 2, D. Shi 3, D. Tourret 3, C. M. Cepeda‑Jiménez 4, 
M. T. Pérez‑Prado 3, L. Laurson 5 & M. J. Alava 1*

Magnesium alloys, among the lightest structural materials, represent excellent candidates for 
lightweight applications. However, industrial applications remain limited due to relatively low 
strength and ductility. Solid solution alloying has been shown to enhance Mg ductility and formability 
at relatively low concentrations. Zn solutes are significantly cost effective and common. However, 
the intrinsic mechanisms by which the addition of solutes leads to ductility improvement remain 
controversial. Here, by using a high throughput analysis of intragranular characteristics through data 
science approaches, we study the evolution of dislocation density in polycrystalline Mg and also, Mg–
Zn alloys. We apply machine learning techniques in comparing electron back‑scatter diffraction (EBSD) 
images of the samples before/after alloying and before/after deformation to extract the strain history 
of individual grains, and to predict the dislocation density level after alloying and after deformation. 
Our results are promising given that moderate predictions (coefficient of determination R2 ranging 
from 0.25 to 0.32) are achieved already with a relatively small dataset ( ∼ 5000 sub‑millimeter grains).

Plastic deformation of crystalline materials is a problem of many length-scales. From the atomic level of 
dislocation core to the meso-scale collective dislocation dynamics, and ultimately to the grain boundary dynamics 
in polycrystals, dislocation mechanisms determine mechanical and physical properties. In single-crystalline hcp 
magnesium, the interplay between basal and non-basal slip mechanisms, leads to low strength and ductility, 
thus restricting possible applications. However, due to the compelling low weight of magnesium, improving the 
strength and ductility of Mg-based materials by alloying, is highly  pursued1.

Meanwhile, materials informatics has become an emerging paradigm in the study and design of advanced 
 materials2–4. Data science and machine learning tools can expedite, for instance, the experimental search for 
optimal compositions of Mg-based alloys with respect to target mechanical  properties5,6. More generally, this 
quantitative perspective can give more insight into microstructural and local dislocation density  evolution7,8. In 
polycrystals, machine learning can enable prediction of grain-wise properties from stress  response9–11 to twin 
 nucleation12–14 and, recently, graph-based representation of the granular structure has shown  promise11,15,16.

In the quest of improving the ductility and strength of Mg-based alloys, it is imperative to capture the precise 
mechanisms that dictate mechanical properties. In this context, this article promotes a data science approach 
towards the understanding of dislocation density evolution, the key component of mechanical response in 
advanced metals. We pursue this data science approach with respect to how common experimental protocols 
proceed. For this purpose, we compare EBSD images from pure Mg and a polycrystalline Mg–Zn alloy (2wt.% 
Zn) samples depicted in Fig. 1 which were originally introduced  in17 (along with the sample preparation details). 
The dog-bone-shaped samples had final size with ∼ 3 mm thickness and 10 mm gage length and the EBSD images 
covered an area of approximately 1.0× 0.7  mm2 with around 4000 and 6000 initial grains in the pure Mg and 
the alloy samples, respectively. The average grain size in both samples was similar, ≈ 13µm . The samples were 
also deformed to 10% strain and low-resolution EBSD images were produced post-deformation, thus yielding 
four classes, total, of EBSD images, the core of the investigations in this work.

We analyze dislocation densities together with grain boundary properties in the two samples before and after 
tensile tests with a true strain rate of 10−3  s −1 , reaching approximately 10% strain. Notice that we look at the 
samples post-mortem at zero elastic strain. The aim for the study is twofold: First, to deduce the strain history of 
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single grains from measured dislocation  densities18–20. And second, to formulate predictions of dislocation density 
evolutions on the granular  level21,22, due to the combined effects of deformation and alloying. Especially the latter 
is vital in deciphering possible dislocation density hotspots that may have major impact on work hardening. 
However, due to having access to only few low-resolution EBSD images, the scope of our study is to show the 
possibilities of the mentioned data science approaches while more detailed implementation is left for future work.

Methods
The EBSD maps use a field emission gun (FEG) SEM (Helios NanoLab 600i, FEI) furnished with an HKL EBSD 
system, a CCD camera and the software package Channel 5.0 for data acquisition and analysis. The measuring 
conditions include parameters of 15 kV and 2.7 nA. The sample holder was tilted at 70◦ with respect to the 
horizontal in order to increase the backscattered signal.

The EBSD data was analyzed through the use of the MTEX toolbox for  MATLAB23 and was further analyzed 
using cluster analysis and dimensionality reduction through sklearn Python  libraries24. MTEX is able to infer 
the grain structure and local lattice orientation tensor κ from the EBSD image, although the latter excludes the 
κi3 components which would require intrusive measurements. The MTEX-inferred κ tensor across the material 
surface is the information that is used for this work 23. With the local orientation tensor, one is able to obtain 
the Nye’s dislocation tensor α25,

where δji is the Kronecker delta function. Furthermore, α is connected to the geometrically necessary dislocation 
(GND) density ρGND26

where b is the magnitude of the Burgers vector. Notably due to the missing components of κ , the presented values 
here express only a lower limit of e.g. ρGND27. Moreover, the estimated ρGND from the pure Mg and Mg alloy were 
not directly comparable, as the imaging step size differed between the two  samples28.

We characterized every grain by the sum of the GND density over the pixels of the grain. In addition, we 
computed parameters capturing local GND structures, i.e.

where r is the shift in pixels times the step size. When varying the parameter r, grains with dimensions smaller 
than r are excluded from the analysis as the features are not defined for those grains. With grain size s, these 
parameters form a vector of five elements describing every grain: (s, ρGND , dρGND,1,dρGND,2 and dρGND,3 ). In 
Fig. 2, the grain features for both pure and alloy Mg are illustrated with reduced dimensionality by principal 
component analysis (PCA) (Fig. 2a–d) and t-distributed stochastic neighborhood embedding (t-SNE)29 
(Fig. 2e–h) and varying r.

(1)αij = κji − δjiκkk ,

(2)ρGND =
1

b
||α||1

dρGND,1(r) =
∑

√

(ρGND(x, y)− ρGND(x + r, y))2,

dρGND,2(r) =
∑

√

(ρGND(x, y)− ρGND(x, y + r))2,

dρGND,3(r) =
∑

√

(ρGND(x, y)− ρGND(x + r, y + r))2,

Figure 1.  EBSD imaging for machine learning. (a,d) 225µm× 450µm snapshots of the grain structure of the 
pure Mg and Mg alloy samples, respectively. The samples were characterised by their ρGND before (b,e) and after 
deformation (c,f), see text for more information. The images in (b,c,e,f) are representative of the images used for 
machine learning purposes, in the four classes studied in this manuscript.
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The linear transformation of the PCA does not distinguish the grains by their strain history in neither pure 
nor Mg alloy, but t-SNE and sufficiently large r the grains form two distinct clusters with good correspondence 
with the EBSD image they were extracted from.

Results
We quantified the distinguishability by first clustering the grains in the space of reduced dimensionality (e.g. 
Fig. 2i) and then measuring how well the found clusters coincide with the actual labels (before and after loading). 
For clustering we used hierarchical agglomerative clustering (bottom-up) with single linkage distance measure 
and the correspondence between the clusters and actual labels was measured with adjusted Rand index R′,30,31

where R (Rand index) is the fraction of correctly labeled pairs of datapoints (either correctly same or different 
labels) of all possible pairs and Rrandom is the expected R with totally random clustering (i.e. R′ = 1 perfect 
correspondence; R′ = 0 random clustering). Fig. 2j shows R′ as a function of r for both samples and the results 
are similar: With r ≈ 18µ m the clustering achieves close to perfect success. This arises from two effects, namely 
the smaller grains that are harder to interpret get excluded from the analysis and long range dislocation structures 
emerge. Thus, as previous simulation results have shown, the strain history of grains is distinguishable in the Mg 
samples from the GND density  evolution18. Both the dimensionality reduction and clustering were implemented 
with scikit-learn24.

In addition to distinguishing the strain history, the data set provided the classic setup for supervised prediction 
of properties of the sample—e.g. the evolution of ρGND—from the initial image before loading. To elucidate, 

(3)R′ =
R − Rrandom

1− Rrandom
,

Figure 2.  Clustering and unsupervised machine learning for EBSD images, using dislocation densities. (a,b) 
Pure Mg grains from both before and after deformation in the space of the two first principal components 
(PC) with r = 1.5µ m and r = 18µ m. (c,d) Mg alloy grains in PC space with r = 0.95µ m and r = 22.8µ m. 
(e–h) Same grains with t-SNE. (i) Example result of agglomerative clustering of grains seen in (h). (j) Adjusted 
Rand index R′ as a function of r after PCA (closed symbols) and t-SNE (open symbols). Due to t-SNE having 
stochastic nature, the results were obtained by repeating the dimensionality reduction and clustering three times 
per value of r and the errorbars show the standard deviation.
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Fig. 3a is a schematic showing grain i for which we can compute features Xi before loading, similarly as above 
for the unsupervised clustering, and we can try to map the features to target value Yi which we set as log ρGND/s 
i.e. logarithm of the average GND density of the grain in the image after loading (more about data collection in 
Supplementary Note 1). Due to the noisiness in the EBSD image of the pure Mg sample after loading (Fig. 1c), 
we were unable to collect a proper target set for the sample and, thus, the supervised machine learning was done 
only with the alloy sample. We added simple features describing the grains and their neighbors to the feature set 
used above for clustering such as the orientation of the grain, average misorientation at the boundary and number 
of neighbors (full list of features for ρGND prediction is found in Supplementary Table I). The sample was then 
divided into training, validation and testing grains as shown in Fig. 3b and, as we had only a single sample, we 
chose a considerably small validation set (5% of grains) to ensure as large training set (75%) as possible. Rest of 
the grains (20%) were used to test the model fit. The mapping was implemented with Support Vector Machine 
(SVM) (Supplementary Note 2), chosen due to the comparatively small number of hyperparameters; we have 
tried also other, more complex ML models such as artificial neural networks, obtaining similar results. We note 
that the number of grains in the dataset is relatively small, and hence the limiting factor might not be the ML 
model but rather the limited amount of training data.

Figure 3c illustrates the true versus predicted log ρGND . The correlation between the target and the prediction 
are moderate as implied by the coefficient of determination R2 = 0.32 and Spearman rank correlation coefficient 
rS = 0.61 for the test grains. Moreover, Fig. 3d–e shows the predicted ρGND/s compared to the true values as a 
map of the test grains. Clearly the SVM is able to find hotspots with high ρGND with good accuracy although 
some errors exist and for some cases the high densities are predicted for neighboring grains (e.g. bottom left 
edge grain with high true ρGND/s ). Overall, the results are remarkable considering only a single sample was used.

Obviously our prediction success suffers from some properties of the dataset and used features. Firstly, our 
tracking algorithm does not always find the exact pixels of the image after loading corresponding to certain grain 
in the initial image. Also the noisiness and missing ρGND pixels in the after image cause imprecision to the target 
values (Supplementary Note 3). And more importantly, the defined grain features do not capture all relevant 
characteristics of the sample: they neglect most information about the grain boundaries between the neighboring 
grains and the well-known grain boundary effect of impeding dislocation  motion32,33.

For instance ρGND/s shows visible dependence on the average misorientation 〈θ〉 at the grain boundary for 
grains after loading in both samples as seen in Fig. 4a–c. The data shows that the relative increase in ρGND/s vs 〈θ〉 
seems to be steeper in the alloyed sample, although the above mentioned difference in the imaging protocol (step 
size) can have an effect too. Moreover, Fig. 4d–f presents analysis of ρGND correlation across grain boundaries,

(4)corrρGND (x, y) =
�(ρGND(x

′, y′)− ρGND)(ρGND(x
′ + x, y′ + y)− ρGND)�

�ρGND − ρGND�
2

,

Figure 3.  Predicting intra-grain dislocation contents in deformed specimens, using EBSD images. (a) 
Predicting grain-level dislocation density evolution starts by representing grains by their features Xi before 
deformation and building the target by collecting ρGND/s after deformation. (b) Train-test split of the grains 
in the alloy sample. The grains colored in red are bordering grains which were partially outside the image after 
loading and had target unavailable. (c) The SVM predicted versus the true values of log(ρGND/s) for both the 
training and test grains. (d,e) Grains in the test set (axes transposed compared to (b)) colored by the true and 
predicted ρGND/s . The red (blue) highlighted grains correspond to those in top (bottom) 10% of all data.
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where the coordinate (x′, y′) lies inside grain i and (x′ + x, y′ + y) lies inside grain j which is a neighbor of i, in 
grains of the Mg alloy after loading. The data is computed for grain pairs (where grains with size smaller than 
64 pixels were omitted) with misorientation angle in a given range. As is evident from comparing the low-angle 
grain pairs with 0◦ ≤ θ < 7.5◦ in (d) and high-angle grain pairs with 15◦ ≤ θ < 22.5◦ in ( e), the correlations 
diminish when the misorientation angle increases. More generally, Fig. 4f illustrates the decay of the correlation 
(along x = y ) for three subsequent ranges of θ . The overall decay somewhat follows corrρGND (x = y) ∝ d−3/4 
where d is the distance from the neighbor grain. And the difference in the misorientation angle between the 
grains shifts the correlation curve, i.e. correlations decrease when θ increases and vice versa

To incorporate the grain boundary effect into the prediction problem, we formed a graph of the granular 
structure, as in Fig. 5a, collected features Eij characterising the boundaries between neighbouring grains (e.g. 
misorientation; see Supplementary Table II) and applied graph networks (GN) to predict log ρGND/s34. The GN 
architecture followed the encode-process-decode network which has been used on e.g. glassy systems with some 
 success34,35 (More details on the GN training procedure and results are presented in Supplementary Note 4). 
Figure 5b shows the true versus GN predicted ρGND . Conversely, the goodness of the model prediction is slightly 
worse than with SVM and without grain boundary properties, R2 = 0.25 and rS = 0.54 . But, as mentioned earlier, 
the data set has its limitations: Fig. 5c presents the learning curves for SVM and GN obtained by fitting the models 
with reduced training set (i.e. excluding part of the training grains) and measuring the mean squared error (MSE) 
for the test set. The figure highlights the smallness of the training set as the prediction success has not converged. 
By fitting a decreasing power law, MSE ∝ N−α

grains , to the learning curves, it seems that the GN loss is decreasing 
with steeper slope and, therefore could outperform SVM with proper data set encompassing multiple samples.

Discussion
In conclusion, we have applied machine learning methods to study and predict dislocation density evolution in 
Mg samples. Observing only the GND density obtained by low-resolution EBSD, we were able to distinguish the 
strain histories of individual grains. Moreover by using the grain-wise information of the Mg alloy sample before 
tensile loading, we trained SVM and GN to predict GND density after loading. Both SVM and GN produced 
predictions with adequate success and, although the SVM outperformed the GN which used also the grain 
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Figure 4.  Dislocation correlations, extracted from EBSD images. (a,b) Boxplots showing the distribution of 
grain-wise ρGND/s after deformation binned according to average misorientation at boundary θn/nnbr , i.e. the 
total misorientation summed over neighbor grains divided by the number of neighbors, for pure and Mg alloy, 
respectively. The green lines show the distribution average. (c) The average seen in the boxplots as a function of 
θn/nnbr scaled to start from unity. (d,e) Correlation (Eq. 4) of pixel ρGND in Mg alloy sample after deformation 
across grain boundaries (x, y the distance from the boundary) for neighboring grains with misorientation 
0◦ ≤ θ < 7.5◦ or 15◦ ≤ θ < 22.5◦ , respectively. (f) The correlation along the diagonal x = y for three 
consecutive misorientation ranges. The dashed line shows d−3/4 as a guide to eye.
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boundary information, the GN showed possibility of more significant improvement with larger datasets which 
gives a natural direction for future research. In addition, for future studies of GNDs (as well as statistically stored 
dislocations), it might be interesting to explore the use of methods which probe a larger depth of the material, 
such as microLaue  diffraction36. Overall, the used machine learning methods show promise in the study of the 
plastic deformation on the granular level, and in the long run, machine learning can assist in optimising granular 
properties to achieve desired material properties. Here, we have shown this by looking at two cases and our 
results show how these samples exhibit different signatures. On one hand, the strain history is distinguishable 
regardless of the alloying procedure. But on the other hand, some differences are seen in the grain boundary 
effect between the pure Mg and alloy cases as the dislocation density inside a grain increases more rapidly with 
the average misorientation at the boundary in the alloyed sample.

Data availibility
The data supporting the findings of this paper are available from the corresponding author upon reasonable 
request.
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