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A B S T R A C T

Material characterization in nano-mechanical tests may provide information on the potential heterogeneity
of mechanical properties. Here, we develop a robust neural-network interatomic potential (NNIP), and we
provide a test for the example of molecular dynamics (MD) nanoindentation, and the case of body-centered
cubic crystalline molybdenum (Mo). We employ a similarity measurement protocol, using standard local
environment descriptors, to select ab initio configurations for the training dataset that capture the behavior
of the indented sample. We find that it is critical to include generalized stacking fault (GSF) configurations,
featuring a dumbbell self-interstitial on the surface, to capture dislocation cores, and also high-temperature
configurations with frozen atom layers for the indenter tip contact. We develop a NNIP with distinct dislocation
nucleation mechanisms, realistic generalized stacking fault energy (GSFE) curves, and an informative energy
landscape for the atoms on the sample surface during nanoindentation. We compare our NNIP results with
nanoindentation simulations, performed with three existing potentials – an embedded atom method (EAM)
potential, a gaussian approximation potential (GAP), and a tabulated GAP (tabGAP) potential – that predict
different dislocation nucleation mechanisms, and display the absence of essential information on the shear
stress at the sample surface in the elastic region. Finally, we compared our NNIP nanoindentation results with
experiments, showing reliable predictions for reduced Young’s modulus and observable slip traces.
1. Introduction

Nano-mechanical tests serve as essential tools for probing the me-
chanical properties of materials at the nanoscale. Techniques such as
nano-tensile/compression [1–3], nanoindentation [4–11], and creep
testing [12] play a pivotal role in revealing the intrinsic properties
of materials. This understanding, in turn, facilitates the design and
production of innovative materials capable of functioning in extreme
environments. These tests involve subjecting the material to controlled
strain/stress at the nanoscale, enabling researchers to gain valuable
insights into its mechanical response. This knowledge is crucial in the
field of defect physics, as nano-mechanical tests provide a means to in-
vestigate the mechanisms of defects nucleation and their impact on the
mechanical performance of materials under extreme conditions. In this
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study, we aim to present a comprehensive method for simulating nano-
mechanical tests, taking nanoindentation as an example, on crystalline
materials using neural-network interatomic potentials (NNIPs).

Nano-mechanical test techniques find application in several areas
of materials science. Specifically, in situ techniques [13,14] contribute
significantly to the understanding of material deformation under con-
trolled applied stress or strain, while the specimen is simultaneously
observed/measured by electron microscopic devices. These method-
ologies play a pivotal role in exploring materials properties at the
nano scale, offering insights into the intrinsic properties of materials,
such as the strength of each crystalline grain. Furthermore, these
techniques prove invaluable in investigating temperature-related de-
formation mechanisms inherent in crystalline materials. The focus of
this paper is on nanoindentation testing, a widely utilized method for
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assessing material properties on open surfaces. This technique yields
results for various properties, encompassing hardness, strength, dis-
location nucleation mechanisms, dislocation density, grain boundary
effects, and dislocation junction formations [15–24]. However, it is
essential to note that nanoindentation testing involves intricate defect
nucleation mechanisms and plastic deformations, rendering accurate
modeling a formidable challenge within the realm of computational
materials science.

Various computational methods, such as finite element methods
(FEM) [25–27], discrete dislocation dynamics (DDD) [28–32], and
molecular dynamics (MD) [33–37], are employed for modeling nano-
mechanical testing. In FEM, numerical solutions to differential equa-
tions in mathematical models are used to approximate and analyze the
complex behavior of materials. While FEM and DDD methods prove
useful in specific scenarios, they lack atomic-level precision, thereby
falling short of achieving the desired level of accuracy. On the other
hand, MD simulations can provide atomic-level insights into the dislo-
cation dynamics of materials, given the use of interatomic potentials
finely tuned for nano-mechanics in the simulations.

Machine-learned force fields (MLFFs) [38–47] offer a reliable method
for modeling nano-mechanical tests with high precision. Various MLFF
types, such as Gaussian Approximation Potentials (GAP) [39] and its
tabulated version (tabGAP) [48], as well as active learning meth-
ods [49,50], are available in the literature. In addition, NNIPs exhibit
exceptional accuracy in predicting atomic energies and forces [42,51–
56], overcoming the time and system size limitations inherent in
traditional ab initio molecular dynamics (AIMD) simulations. Given
the ability of NNIPs to learn complex functions, such as the energy
landscape of an extended dislocation in a metallic crystal, they prove
to be excellent tools for modeling nano-mechanical testing simulations.
MLFFs have been successfully applied to various problems, including
catalysis [57,58], point defects modeling [59,60], multi-component
materials modeling [61,62], and multi-phase systems [45], demon-
strating their versatility. However, the exploration of nano-mechanical
testing simulations using MLFFs is an area that remains to be fully
explored.

In this paper, we present a study focused on the development of
a robust NNIP by enhancing a starting dataset sourced from the litera-
ture [63] within the PANNA (Properties from Artificial Neural Network
Architectures) framework [64]. While more complex models, such as
MACE [55], offer improved accuracy, we chose PANNA to strike a bal-
ance between accuracy and simulation performance. We compare the
Behler–Parrinello (BP) descriptor vectors [38] of the training dataset
with those of a single crystal BCC Molybdenum configuration, indented
with an embedded atom model (EAM) potential [65], to determine
how closely the training dataset resembles the indentation process. This
method is inspired by studies, such as those referenced in [66,67] ,
which utilize similarity measurements in the development of MLFFs. To
improve the accuracy of the potential, we introduce high temperature
configurations with a frozen layer and generalized stacking fault (GSF)
configurations with a self-interstitial on the gamma surface. These
configurations are designed to closely mimic atoms in the dislocation
cores, on the surface, and under the indenter tip. Our results show
that including these configurations in the training dataset reduces the
distance between the atoms the potential is trained on and the indented
sample. Finally, we present the results of an MD nanoindentation
simulation using the potential trained with the modified dataset.

2. Methods

2.1. Descriptor parameters

In this work, PANNA: Properties from Artificial Neural Network
Architectures [64], which utilizes Tensorflow [68] to train/evaluate
2

fully-connected feed-forward NNIPs, is used to develop the interatomic
Table 1
Values of the parameters that appear in the definition of
the radial and angular G-vectors, Eqs. (1), (2), (3). Where
a number of components is given, the values are equispaced.
Descriptor parameter Symbol Value

Radial component:
Radial exponent (Å−2) 𝜂𝑟𝑎𝑑 32
cutoff (Å) 𝑅𝑟𝑎𝑑

𝑐 5
Number of 𝑅𝑠 radial 𝑅𝑟𝑎𝑑

𝑠 24
Angular component:
Radial exponent (Å−2) 𝜂𝑎𝑛𝑔 16
cutoff (Å) 𝑅𝑎𝑛𝑔

𝑐 5
Number of 𝑅𝑠 angular 𝑅𝑎𝑛𝑔

𝑠 8
Angular exponent 𝜁 128
Number of 𝜃𝑠 𝜃𝑠 16

potential, with the modified version of Behler–Parrinello (mBP) de-
scriptors [38,69]. The mBP representation generates a fixed-size vector
(the G-vector) for each atom in each configuration of the dataset. Each
G-vector describes the environment of the corresponding atom of the
configuration to which it belongs, up to a cutoff radius 𝑅𝑐 . Although
higher dimensional G-vectors lead to a more accurate representation
of the target potential energy surface, oversized ones increase the MD
simulation computational cost. In terms of the distances 𝑅𝑖𝑗 and 𝑅𝑖𝑘 of
the atom 𝑖 from its neighbors 𝑗 and 𝑘 and the angle subtended by those
distances 𝜃𝑖𝑗𝑘, the radial and angular G-vectors are given by:

𝐺𝑟𝑎𝑑
𝑖 [𝑠] =

∑

𝑖≠𝑗
𝑒−𝜂(𝑅𝑖𝑗−𝑅𝑠)2𝑓𝑐 (𝑅𝑖𝑗 ) (1)

𝐺𝑎𝑛𝑔
𝑖 [𝑠] = 21−𝜁

∑

𝑗,𝑘≠𝑖
[1 + 𝑐𝑜𝑠(𝜃𝑖𝑗𝑘 − 𝜃𝑠)]𝜁

× 𝑒−𝜂[
1
2 (𝑅𝑖𝑗+𝑅𝑖𝑘)−𝑅𝑠]2𝑓𝑐 (𝑅𝑖𝑗 )𝑓𝑐 (𝑅𝑖𝑘)

(2)

where the smooth cutoff function (which includes the cutoff radius 𝑅𝑐)
is given by:

𝑓𝑐 (𝑅𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1
2

[

cos
( 𝜋𝑅𝑖𝑗

𝑅𝑐

)

+ 1
]

, 𝑅𝑖𝑗 ≤ 𝑅𝑐

0, 𝑅𝑖𝑗 > 𝑅𝑐

(3)

and 𝜂, 𝜁 , 𝜃𝑠 and 𝑅𝑠 are parameters, different for the radial and angular
parts. Table 1 shows all values selected for the descriptor parameters in
this study. The choice of the cutoff value is made so that it covers up to
three nearest neighbors of the center atom in the BCC Mo, which has
a lattice constant of 𝑎 = 3.17 Å, and thus the third nearest neighbor’s
distance is 𝑎 ×

√

2 = 4.48 Å. The length of the G-vector for a single
element system is

|𝐺𝑖[𝑠]| = (𝑅𝑎𝑛𝑔
𝑠 × 𝜃𝑠) + 𝑅𝑟𝑎𝑑

𝑠 , (4)

which leads to a G-vector of length 152, given the parameters reported
in Table 1.

2.2. Similarity measurements

In this study, a distance-based criterion, inspired by [66,67], is
utilized to quantify the similarity between two distinct configurations.
This criterion is subsequently extended to evaluate the closeness of two
disparate datasets to one another. Consider two configurations, labeled
as 𝛼 and 𝛽, with 𝑛 and 𝑚 atoms per supercell, respectively. The distance
matrix for the two configurations, 𝑫𝜶𝜷 , has a 𝑛×𝑚 dimension and each
element of the matrix is the euclidean distance of atom 𝑖 in 𝛼 to atom
𝑗 in 𝛽:

𝐷𝛼𝛽
𝑖,𝑗 = ‖

‖

‖

𝐺𝛼
𝑖 [𝑠] − 𝐺𝛽

𝑗 [𝑠]
‖

‖

‖2
(5)

Where 𝑖 ∈ {1, 2,… , 𝑛} and 𝑗 ∈ {1, 2,… , 𝑚}, and each 𝐺[𝑠] is a 152
dimensional vector, as explained in the previous section. Given this

matrix, we can compute the minimum distance of each atom 𝑖 in
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Table 2
The original dataset from [63], showing 𝑁𝑠 as the number of structures,
𝑁𝑎𝑡 as the number of atoms per configuration, and 𝑁𝑠𝑒𝑙 as the number of
selected configurations in the final dataset. The structure types in bold
have been added to the original dataset.
Structure type 𝑁𝑠 𝑁𝑎𝑡 𝑁𝑠𝑒𝑙

Isolated atom 1 1 None
Dimer 19 2 None
Slice sample 1996 1 All
Distorted BCC 547 2 All
A15 100 8 None
C15 100 6 None
HCP 100 2 All
FCC 100 1 None
Diamond 100 2 None
Phonon 50 54 All
Self-interstitials (SIA) 32 121 14
di-Self-interstitials 14 122–252 All
Simple Cubic 100 1 None
Vacancy 210 53 All
di-Vacancy 10 118 All
tri-Vacancy 14 117 All
Liquid 45 128 None
Short range 90 53–55 None
Surface (100) 45 12 All
Surface (110) 45 12 All
Surface (111) 41 12 All
Surface (112) 45 12 All
Liquid Surface 24 128 All
𝛾-surface 178 12 All
GSFCs 100 18 All
GSFCs + SIA 100 55 All
Pileup 1000 32 All
HT + substrate 600 54–72 All

configuration 𝛼 from any atom 𝑗 in configuration 𝛽, and we define the
similarity measure from 𝛼 to 𝛽 as the maximum among these minima,
.e.:
𝛼𝛽 = max

𝑖
min
𝑗

𝐷𝛼𝛽
𝑖,𝑗 . (6)

It must be noted that this final quantity is not a proper distance, but
non-symmetric quantity giving us the ‘‘similarity measure’’ method,

xplained in this section, is subsequently employed to gain insights
rom the initial dataset. This also includes exploring ways to enhance
he dataset through innovative configurations, specifically in relation to
n indented supercell. For instance, one can compute the average of all
𝛼𝛽 values between atoms from two distinct datasets or configuration

ypes within a dataset. This calculation provides an indication of the
egree of (dis)similarity between considered datasets/configuration
ypes. The same goes for measuring the similarity of a dataset to a
argeted simulation, which in our case is an indented sample.

.3. Dataset evaluation and improvement

As a starting point, we used a dataset [63] originally developed
o train a MLFF within the GAP framework [39,70]. The objective
as to determine whether this dataset accurately represents the atomic

onfigurations occurring during nanoindentation simulations, for which
e employed an EAM potential [65]. We then analyzed the obtained
ata to determine the degree of similarity between the atomic config-
rations in the dataset and those observed during the nanoindentation
imulations.

This level of similarity is evaluated by identifying which atom 𝑗 in
he dataset has the minimum distance to each atom 𝑖 in the indented
ample. The obtained value corresponds to the largest minimum distance
or each atom in the indented sample from all the atoms in the dataset.
he concept of ‘‘distance’’ for two atoms 𝑖 and 𝑗, refers to the 𝑙2-
orm of 𝐺𝑖[𝑠] − 𝐺𝑗 [𝑠], where 𝐺[𝑠] are the fixed-size mBP descriptor
ectors [38,69], as discussed in the previous sections. To further ana-
yze the similarity measurement method, we calculated the distances
3

of sheared BCC configurations from a perfect BCC crystal (Fig. S10
in the supplementary material (SM)). It is shown that as the applied
strain increases, the distance values also increase. This aligns with
intuitive expectations, validating our similarity measurement method.
To this end, we compared the configuration types present in the dataset
to those of all atoms identified in the indented sample and drew
conclusions based on the level of correspondence between the two sets.
Through this analysis, we aimed to gain insights into the suitability
of the selected dataset for studying nanoindentation behavior and
identifying the underlying mechanisms governing it.

To generate a suitable dataset for training a NNIP targeted at
nanoindentation simulations, it is crucial to ensure that the config-
urations included accurately represent the three essential regions of
a sample under indentation. These regions include the atoms on the
surface of the sample, which correspond to the pileup patterns, the
atoms situated beneath the indenter tip that undergo significant plastic
deformation, and the atoms located on the nucleated dislocation cores.
The evaluation of these three critical regions and development of
configurations that closely resemble them can serve as a benchmark
for ML potentials for other BCC materials.

Before comparing the original dataset with the indented sample,
we calculated the average minimum distance between each pair of
configuration types and generated a correlation figure to visualize their
proximity (Fig. 1(a)). It is evident from this figure that although the
isolated atom and dimer configurations are quite distant from almost all
other configurations, they are relatively close to the indented samples.
However, these configurations were not included in the final dataset
due to their low numbers (1 and 19, respectively), which were deemed
insufficient for training a NNIP. Moreover, the A15, simple cubic (sc),
diamond (dia), liquid and C15 configurations were removed from the
final dataset as they were located at a distance beyond the set threshold
from the indented configurations, with simple cubic, diamond, and C15
configurations having the largest distance. Furthermore, we excluded
short-range configurations from the final dataset because their energies
varied significantly (Fig. S1(a) in the SM), leading to training difficul-
ties. Finally, to reduce computational cost, we kept only half of the
self-interstitial configurations in the final dataset. Table 2 summarizes
all modifications made to the original dataset.

Several methods can be employed to determine a ‘‘good’’ threshold
for deciding whether to keep or remove a particular configuration from
the dataset, based on its similarity to the indented configuration. In this
study, we have chosen to use the start of the tail of the distribution
of the minimum values in the dataset distance matrix as the threshold,
which is approximately 6 based on Fig. 1(b). Fig. 1(b) also demonstrates
that this value is consistent with the minimum distances between the
dataset configurations and all three orientations of the indented sam-
ples. All decisions regarding whether to keep or remove a configuration
from the final dataset in this study are based on this threshold.

To ensure the accuracy of the modifications made to the dataset,
we removed one type of configuration from the dataset at a time
and quantified the number of atoms in the indented samples that had
minimum distances greater than 6 from the dataset (Fig. 1(c)). As
our analysis show, the number of atoms with a minimum distance
greater than 6 to the dataset does not increase when A15, diamond,
Face-Centered Cubic (FCC), simple cubic, short range, isolated atom,
and dimer configurations are removed, indicating the dataset’s stability
against the indented samples, whether these configurations are present
in the dataset or not. However, upon removing Hexagonal Close-Packed
(HCP) configurations, the number of atoms with a large distance from
the dataset increases, which is consistent with the fact that the average
minimum distance of HCP configurations to the indented samples
is 5. The greatest increase in the number of atoms with a distance
greater than 6 from the dataset occurs when surface configurations are
removed, which underscores their importance since they represent the
surface in the nanoindentation simulations.
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Fig. 1. Dataset evaluation and stability. (a) Average of minimum distances between different configuration types as well as with the indented samples. (b) Distribution of the
minimum distances of different configurations to the rest of the data points in the dataset and the minimum distances of the dataset with the indented configurations. (c) Effect
of configuration removal from the dataset on the minimum distances of the dataset to the indented sample.
Following the modifications made to the dataset obtained from [63],
attempts were made to enhance its quality by incorporating various
types of configurations and reevaluating the distances of the indented
configuration from the dataset. Among the crucial local environments
that should be included in the dataset are the atoms belonging to the
dislocation cores. Furthermore, it was discovered that the distances of
the atoms beneath the indenter tip and those on the surface exceeded
the selected 6 threshold (Fig. 2(a)). These environments in the indented
samples are critical to be covered in the dataset since dislocation cores
play a vital role in the dislocation dynamics properties, and the atoms
beneath the indenter tip trigger these line defects. Additionally, the
plastic region beneath the surface is responsible for the pile-up patterns
that appear on the surface of the indented configuration. It is also
imperative to incorporate configurations in the dataset representing
atoms on the surface to capture this phenomenon.

In order to model the aforementioned regions of an indented sam-
ple, we explored the use of high-temperature configurations to effec-
tively reduce the distance between the atoms in these areas and the
dataset, as depicted in Fig. 2(b). Nevertheless, accounting for the atoms
beneath the indenter tip and on the surface requires the inclusion
of a layer of frozen atoms in the high-temperature configurations
that emulate the contact of the sample with the indenter tip. The
addition of 1000 isothermal–isobaric ensemble (NPT) high-temperature
configurations with 16 atoms in the 2 × 2 × 2 supercells appeared to
decrease the distances between the atoms on the dislocation cores and
the dataset. We utilized the same approach for the atoms beneath the
indenter tip. In this regard, we introduced 600 configurations, denoted
as ‘‘high temperature (HT) + substrate’’, where a layer of atoms was
frozen while other atoms were heated to high temperatures (under the
melting point). While there are various unique layers of atoms that can
be taken into account as the contact to the substrate, we verified that
300 configurations (3 × 3 × 3) with 54 atoms per supercell – displayed
in the middle figure of Fig. 2-(b) – were adequate and most relevant
after trying different layers of atoms. Additionally, we included 300
configurations (4 × 3 × 3) with 72 atoms per supercell, which featured
4

a layer of atoms frozen on top. Moreover, it is crucial for a NNIP’s
dataset to incorporate configurations resembling the atoms located on
the surface of the indented sample. To achieve this, we introduced 1000
BCC surface configurations (3 × 3 × 2) with 32 atoms per supercell,
where a layer of atoms was frozen on top while the remaining atoms
were subjected to high temperature. These configurations were named
‘‘pileup’’ in our study and enabled the dataset to account for the atoms
in this region.

Another effective approach to cover the dislocation cores is through
the use of GSFCs that incorporate a self-interstitial atom (SIA) atom on
the surface (as illustrated in Fig. 3(a)). These configurations have been
found to be particularly effective in reducing the distances of atoms on
the dislocation cores from the dataset. While the use of GSFCs without
an SIA on the surface can also reduce distances of atoms beneath the
dislocation cores and on the slipping plane (as shown in Fig. 3(b)), it
may not entirely cover all the atoms on the dislocation core.

Incorporating a SIA on the surface of the GSFCs leads to a significant
decrease in the distances of almost all atoms on the dislocation cores
from the dataset (as demonstrated in Fig. 3(c)). Notably, the use of
GSFCs with a SIA instead of high-temperature configurations solely
for the dislocation cores presents several advantages. For instance, the
distribution of energies of these configurations is narrower, facilitating
the learning process for the network (as depicted in Fig. S1((b) in the
SM). Furthermore, only 100 GSFCs with SIA configurations, as opposed
to the 1000 mentioned for high-temperature configurations, can ease
the process of training the network. Additionally, using GSFCs with
SIA configurations guarantees that no atoms on the dislocation core
will have a distance greater than 6, thus ensuring the closeness of the
distances of these configurations to the dislocation cores.

The visualization of the distances between the atoms in all three
regions of interest and the dataset reveals a significant reduction in
distances after incorporating the high-temperature configurations (see
Fig. 2(c)). The distribution of distances for each region before and after
adding the high-temperature configurations is depicted in Fig. 2(d).
Although a few atoms still have distances greater than 6 under the
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Fig. 2. Illustration of the novel configurations discovered in this study, which correspond to distinct regions of an indented sample. The figures are arranged horizontally to
demonstrate the correlation between them. (a) The distances of the dislocation cores, atoms beneath the indenter tip, and pileup atoms on the surface from the original dataset.
(b) The newly detected high-temperature configurations, which are associated with diverse regions of the indented sample, in terms of their distance. (c) The distance of the
aforementioned regions shown in panel (a) after incorporating the newly found configurations to the dataset. (d) The distribution of distances of the aforementioned atoms from
the dataset before and after incorporating the newly introduced configurations.
Fig. 3. The impact of incorporating GSFCs on the distances of atoms on dislocation cores from the dataset. (a) A schematic representation of the GSFCs integrated into the dataset.
(b) Addition of GSFCs reduces the distances of atoms on the slip plane of dislocation cores from the dataset. (c) By including a SIA on the surface of GSFCs, all atoms on the
dislocation cores can be covered. (d) The distribution of atom distances on dislocation cores reveals that GSFCs with SIA can effectively cover dislocation cores.
indenter tip, the number of such atoms has notably decreased after
adding the appropriate configurations. Finally, because we are trying
to develop a NNIP for the case of nanoindentation simulation during
which atoms are compressed under the indenter tip, we added 300
compressed 3 × 3 × 4 configurations with each of them including 72
atoms.

To further investigate the generalization of this distance-based ap-
proach, we calculated the distances of the indented samples acquired
from the final trained NNIP from the final training dataset. The results
are shown in Fig. S8 of the SM. The tail of the distance distributions
is still lower than the threshold distance of 6 for all three regions of
the indented sample. This demonstrates that the distance-based method
used in this work could be expanded to mechanical simulations of at
least other BCC materials.
5

2.4. DFT calculations

The DFT calculations were performed with the Quantum
Espresso [71,72] (QE) package, using a norm-conserving PBEsol
exchange–correlation functional [73–75] and 14 valence electrons. The
Brillouin zone was sampled using Monkhorst–Pack method [76], and,
from the convergence analysis of Fig. S2 in the SM, the k-point mesh
and plane-wave cutoff energy in a Mo unit-cell were set to 8 × 8 × 8
and 60 𝑅𝑦, respectively. The selected k-point grid was rescaled for
supercells calculations according to their dimension, implying the use
of a 2 × 2 × 2 grid for 4 × 4 × 4 conventional super-cells, and was
set to 1 × 1 × 1 for any bigger configuration. Smearing was introduced
within the Methfessel–Paxton method [77] to help convergence, with a
spreading of 0.00735 𝑅𝑦 (0.1 eV). The structural properties, involving



Acta Materialia 277 (2024) 120200A.D. Naghdi et al.

w
a

t
b
n
f



T



w
c
p



w
t
i
o

2

2

s
i
0
a
a
i
s
o

a
f

𝐹

w

p
𝑧
a

𝑥
𝑧
t
f
i

2

b
e

𝑃

w
𝐸
s
m

𝑃

w



w
t
d

𝜎

T

𝜏

elastic constants 𝐶𝑖𝑗 , Bulk modulus 𝐵 (in the Voigt–Reuss–Hill approxi-
mation [78]) and Poisson ratio 𝜈, have been computed running the QE
driver THERMO_PW [79] on a Mo unit-cell.

The total energies of the configurations obtained from [63] were
compared with the values calculated in our work to make sure of their
consistency, which is shown in Fig. S4 of the SM.

2.5. Neural network training

In the PANNA framework, the environmental descriptors of each
atom are provided as input to a fully connected network with two
hidden layers, consisting of 256 and 128 nodes for the first and second
layers, respectively, both with Gaussian activation function, and a
single-node output layer with linear activation. The atomic environ-
ment is represented by a descriptor with 152 components, resulting in
a network with 71808 weights and 385 biases. A batch size of 10 is
utilized for training, while the model is trained using initial random
weights and a constant learning rate of 10−4 throughout the training
process. In this methodology, the energy of a configuration consisting
of 𝑁 atoms is defined as the sum of atomic energy contributions:

𝐸 =
𝑁
∑

𝑖=1
𝐸𝑖(𝐺𝑖), (7)

where 𝐸𝑖 is the energy of atom 𝑖 with a G-vector of 𝐺𝑖. The force on
atom 𝑖 which is situated at position 𝑅⃗𝑖 is given by:

𝐹𝑖 = −
∑

𝑗

∑

𝜇

𝜕𝐸𝑗

𝜕𝐺𝑗𝜇

𝜕𝐺𝑗𝜇

𝜕𝑅⃗𝑖

(8)

ith 𝑗 labeling the atoms located within the cutoff distance of atom 𝑖
nd 𝜇 labeling the descriptor components.

To optimize the weights and bias parameters of the network, we use
he Adam algorithm [80] to compute gradients of randomly selected
atches of the training dataset. The loss function for optimizing the
etwork weights, denoted collectively as 𝑊 , consists of two terms, one
or the energy 𝐸 (𝑊 ), and one for the forces, 𝐹 (𝑊 ):

(𝑊 ) = 𝐸 (𝑊 ) + 𝐹 (𝑊 ). (9)

he energy contribution is given by:

𝐸 (𝑊 ) =
∑

𝑠∈batch

[

𝐸DFT
𝑠 − 𝐸𝑠(𝑊 )

]2 (10)

here 𝑠 refers to the atomic configuration, 𝐸𝐷𝐹𝑇
𝑠 is the total energy

alculated from DFT (the target value) and 𝐸𝑠(𝑊 ) is the total energy
redicted by the NNIP. The force contribution is given by:

𝐹 (𝑊 ) = 𝜆𝐹
∑

𝑠∈batch

𝑁𝑠
∑

𝑖=1

|

|

|

𝐹DFT
𝑖;𝑠 − 𝐹𝑖;𝑠(𝑊 )||

|

2
(11)

ith 𝐹DFT
𝑖;𝑠 the force obtained from DFT and 𝐹𝑖;𝑠 the force obtained from

he NNIP, for atom 𝑖 in configuration 𝑠; 𝑁𝑠 is the total number of atoms
n configuration 𝑠. The parameter 𝜆𝐹 adjusts the relative contribution
f the force component and was set to 𝜆𝐹 = 0.5.

.6. Nanoindentation simulations

.6.1. Simulation method and parameters
To establish boundary conditions along the depth (𝑑𝑧) of the Mo

amples, we divided them into three sections in the 𝑧 direction dur-
ng the initial stage: a frozen section with a width of approximately
.02×𝑑𝑧, which ensured numerical cell stability; a thermostatic section
bout 0.08×𝑑𝑧 above the frozen section, which dissipated heat gener-
ted during nanoindentation; and a dynamical atoms section, where the
nteraction with the indenter tip modified the surface structure of the
amples. Furthermore, we included a 5 nm vacuum section at the top
f the sample as an open boundary [6]. We considered the indenter tip
6

s a non-atomic repulsive imaginary (RI) rigid sphere and defined its
orce potential as

(𝑡) = 𝐾
(

𝑟(𝑡) − 𝑅
)2 , (12)

here 𝐾 = 236 eV/Å3 (37.8 GPa) was the force constant, and 𝑟(𝑡) was
the position of the center of the tip as a function of time, with a radius
𝑅 = 3 nm. In experiments, a Berkovich tip is used, which is spherical
at the edge, matching our simulations and depth range studied [81].
We conducted molecular dynamics (MD) simulations using an NVE
statistical thermodynamic ensemble and the velocity Verlet algorithm
to emulate an experimental nanoindentation test. The 𝑥 and 𝑦 axes had
eriodic boundary conditions to simulate an infinite surface, while the
orientation had a fixed bottom boundary and a free top boundary in

ll MD simulations [20,34].
In our simulations, we chose 𝑟(𝑡) = 𝑥0𝑥̂ + 𝑦0𝑦̂ + (𝑧0 ± 𝑣𝑡)𝑧̂, where

0 and 𝑦0 were the center of the surface sample on the 𝑥𝑦 plane, and
0 = 0.5 nm was the initial gap between the surface and the indenter
ip. The tip moved with a speed of 𝑣 = 20 m∕s with a time step of 𝛥𝑡 = 1
s. We chose the maximum indentation depth to be 2.0 nm to avoid the
nfluence of boundary layers in the dynamical atoms region.

.6.2. Nanomechanical response of the material
The elastic nanocontact during loading process, 𝑃H, is characterized

y a Hertz fitting curve based on the sphere-flat surface contact and
xpressed [34,82] as:

H = 4
3
𝐸Hertz𝑅

1∕2ℎ3∕2, (13)

here 𝑅 is the indenter radius, ℎ is the indenter displacement, and
Hertz is the reduced Young’s modulus. Meanwhile, the contact pres-

ure, 𝑃 , is calculated by using a linear elastic contact mechanics for-
ulation [5,34]:

= 2𝜋

[

24𝑝
(

𝐸Y𝑅
1 − 𝜈2

)2
]1∕3

, (14)

with 𝐸𝑌 as the Young’s modulus, 𝑝 as the simulation load, 𝑅 the
indenter radius, and 𝜈 the Poisson’s ratio; the radius of the contact area
is obtained with the geometrical relationship:

a(ℎ) =
[

3𝑃𝑅
(

1 − 𝜈2
)

∕8𝐸Y
]1∕3 (15)

which is related to the inner radius of the plastic region where the
defects nucleate. These quantities provide an intrinsic measure of the
surface resistance to a specific defect nucleation process [5,34], and
yield to a universal linear relationship between 𝑃∕𝐸𝑌 and 𝑎(ℎ)∕𝑅𝑖 given
by

𝑃
𝐸𝑌

= 0.844
1 − 𝜈2

𝑎(ℎ)
𝑅𝑖

, (16)

where 𝑎(ℎ)∕𝑅𝑖 can be considered as the nanoindentation strain.
To determine the strength and stability of the Mo matrix under load,

we compute the principal stress applied on the 𝑧 direction as [9] :

𝜎𝑧𝑧 = −
[(

1 −
arctan(𝛼)

𝛼

)

(1 + 𝜈) − 1
2(1 + 1∕𝛼2)

]

, (17)

here the quantities  and 𝛼 are defined as:

=
3𝑃ave

2𝜋a(ℎ)2
, 𝛼 =

a(ℎ)
ℎ

.

ith ℎ as the indentation depth and 𝑎(ℎ) the contact area between
he indenter tip and the top atomic layers. The stress applied in the
irection parallel to the indenter surface is then expressed as:

𝑥𝑥 = 𝜎𝑦𝑦 = − 
1 + 1∕𝛼2

(18)

his gives the maximum shear stress:

= 1 (

𝜎 − 𝜎
)

, (19)
max 2 𝑧𝑧 𝑥𝑥
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Fig. 4. Prediction of the Energies and forces for the validation set during the NNIP
training.

that the material can withstand before it begins to undergo plastic
deformation, being normalized by the applied pressure (equal to the
applied force 𝐹 divided by the contact area). The normalized depth is
the distance from the surface of the material to the point at which the
maximum shear stress occurs, normalized by the radius of the indenter
that is used to apply the shear forces.

2.6.3. Defect analysis
In order to identify the defects in nanoindentation simulations,

we apply the BCC Defect Analysis (BDA) developed by Möller and
Biztek [83] which utilizes coordination number (CN), centrosymmetry
parameter (CSP), and common neighbor analysis (CNA) techniques to
detect typical defects found in bcc crystals. The characterization of
the materials defects starts by calculating CN, CSP, and CNA values
of all the atoms by considering a cutoff radius of (1 +

√

2)∕2𝑎0 with
𝑎0 as the lattice constant of Mo. Thus, the six next-nearest neighbors
of perfect bcc atoms are into this cutoff and their CN value increases
from 8 to 14. Consequently, BDA compares the CN and CSP values
of each atom generating a list of non-bcc neighbors with CNA≠bcc
and CN≠14 that classifies for the following typical defects: surfaces,
vacancies, twin boundaries, screw dislocations, {110} planar faults, and
edge dislocations.

2.6.4. Md simulation post-processing
All visualization of the simulations was performed using OVITO

[84]. The surface areas for surface energy calculations were obtained
using the ‘‘construct surface mesh" tool [85] in OVITO.

3. Results

3.1. NNIP validations

3.1.1. NNIP predictions for energies and forces
We assessed the accuracy of the trained NNIP by calculating the root

mean square error (RMSE) for both energies per atom (E-RMSE) and
forces components (F-RMSE) at each checkpoint saved during training.
To ensure the reliability of the final model on unseen data, 10% of
configurations of each structure type were reserved for validation prior
to training. Fig. 4 shows that both the F-RMSE and E-RMSE decrease
gradually as the network processes more data, reaching a plateau after
850 K training steps with minimum values of 9.2 meV/atom and 0.16
eV/Å, respectively.

The error distribution for both energies and forces are shown in the
histogram plot of Fig. 5(a,b). The two islands in Fig. 5(a) are due to
the energy difference between the pure and defected crystals. Also, the
presence of three clusters in Fig. 5(b) is due to the large forces on the
atoms in the defected configurations.
7

Fig. 5. NNIP error on (a) total energies and (b) forces of each atom.

3.1.2. Bulk validation
Next, we compare the elastic properties of the NNIP with both DFT

and experimental results, as well as to those predicted by other inter-
atomic potentials, such as GAP, tabGAP, and the EAM/FS potential,
to evaluate the NNIP performance relative to other commonly used
potentials. Table 3 summarizes the results of the comparison, explicitly
reporting percentage errors with respect to the experimental values.
The NNIP performs well for 𝐶11, 𝐶44 and 𝐵, with percentage errors
below 8% and in similar magnitude to GAP and EAM predictions. We
here stress that the accurate prediction of the shear modulus, 𝐶44, is
crucial for simulating the stresses that are applied to the surface of the
sample during nanoindentation, and, following the good results of EAM
and GAP for this measure, the NNIP proves itself to be promising for
such applications. While the largest error for the NNIP concerns the
prediction of 𝐶12, it can still be considered within a reasonable range
as it does not exceedingly influence the prediction on 𝐵.1

3.1.3. NNIP accurately predicts generalized stacking fault energies (GSFE)
Finally, we compare the NNIP predictions for the GSFE against the

DFT results, as well as other interatomic potentials mentioned in this
work. The study focuses on the two most important slip systems of BCC
crystals, namely the {110}⟨1̄11⟩ and {121}⟨1̄11⟩ families. The results
were obtained for these directions in pure crystals. Additionally, since
it was observed from Fig. 3 that {110}⟨111⟩ GSF configurations with
a ⟨111⟩ dumbbell interstitial on the surface are essential to cover the
atomic environments of the dislocation core in terms of their distance

1 We here remind that 𝐵 = 1 (𝐶 + 2𝐶 ).

3 11 12
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Table 3
Elastic constants 𝐶𝑖𝑗 , bulk modulus 𝐵, and Poisson ratio 𝜈, as obtained with the GAP, tabGAP, EAM/FS and the NNIP potentials
compared to DFT done in this work and experimental data. In parenthesis is reported the modulus of the percentage error
with respect to the experimental value.

GAP tabGap EAM NNIP DFTa DFTb Expc

𝐶11 (GPa) 478 (3.02%) 494 (6.47%) 465 (0.22%) 452 (2.59%) 459 468 464
𝐶12 (GPa) 166 (4.40%) 146 (8.18%) 161 (1.26%) 121 (23.90%) 162 155 159
𝐶44 (GPa) 108 (0.92%) 87 (20.18%) 109 (0%) 111 (1.83%) 97 100 109
𝐵 (GPa) 270 (8.00%) 262 (4.80%) 263 (5.20%) 231 (7.60%) 262 – 250
𝜈 0.26 (10.34%) 0.23 (20.69%) 0.26 (10.34%) 0.21 (27.59%) 0.30 – 0.29

a This work.
b Ref. [63].

c Ref. [86].
Fig. 6. Generalized Stacking Fault Energy (GSFE) for single crystalline Molybdenum
for: (a) {110}⟨1̄11⟩ and (b) {211}⟨1̄11⟩. (c) The GSFE curve for the ‘‘GSFCs + SIA’’
configurations.

to the indented samples, we also calculated and compared the GSFE for
these configurations.

Fig. 6 shows that all potentials predict the GSFE very accurately for
both slip system families and pure crystals. However, EAM/FS displays
errors of about 50% and 32% for the peak of the curve for {110}⟨1̄11⟩
and {121}⟨1̄11⟩ slip families, respectively. The configurations associated
with these curves are crucial, as they represent the atoms on the slip
plane of an indented sample, as illustrated and discussed in Fig. 3.
While it is important for an interatomic potential to accurately predict
the GSFE curve for reliable dislocation modeling, it is equally crucial for
the potential to correctly predict the energies and forces on the atoms
for the dislocation cores. Therefore, in addition to the GSFE curves for
pure crystals, we calculated the GSFE curve for configurations with a
⟨111⟩ dumbbell interstitial on the surface. As depicted in Fig. 6(c), NNIP
is the potential that best predicts these energies, indicating the accurate
simulation of dislocation dynamics during nanoindentation. In contrast,
GAP and EAM potentials showed errors of 40% and tabGAP showed an
8

Fig. 7. Load–displacement curves for different crystal orientations, incorporating a
Hertz fitting curve in the elastic region. The obtained values for the reduced Young’s
modulus are consistent with results from various computational approaches and
experimental data [90]. Specifically, the (001), (011), and (111) crystal orientations
show good agreement between experimental and simulated values, highlighting the
accuracy of the developed interatomic potential, NNIP method, and ML-based atomistic
approach in predicting mechanical properties.

error of 20% against DFT results, indicating their inability to accurately
predict these values. This is discussed further in the following section.

In Table S1 and Table S2 of the Supplementary Information, we
report a comparison in the prediction of the Critical Resolved Shear
(CRS) Peierls barrier and stress for the different potentials with respect
to DFT level for two different Mo sample orientations. The results were
obtained using the PNADIS [87] automated Peierls–Nabarro [88,89]
analyzer for dislocation core structure and slip resistance. Among the
inputs for the calculation are: the Poisson ratio and the Shear modulus
(reportend in the Table), the burger vector and the GSFE for each
potential. As it can be observed, for the {110}⟨1̄11⟩ Mo sample the NNIP
provides the best energy barrier and stress predictions in comparison
to DFT-accuracy. While the GAP and EAM potential underestimate in
a similar way the result, tabGAP fails to capture a valuable estimate
with substantial overestimates. For the {211}⟨1̄11⟩ Mo sample, similar
observations can be made, with the exception of the NNIP result being
close to the GAP and EAM overestimates.

3.2. Nanoindentation MD simulations

3.2.1. NNIP achieves experimentally accurate results in the hertzian regime
In Fig. 7, the load–displacement curves for the three main crystal

orientations are presented, including a Hertz fitting curve in the elastic
region [82]. The obtained values for the reduced Young’s modulus
align well with results from other computational methods and exper-
imental data [20,90]. Specifically, for the (001) crystal orientation,
the experimental value is 327 GPa, while our MD simulation with
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Fig. 8. Hertzian calculation of normalized maximum shear stress by the applied
pressure, 𝜏max∕𝑃 , as a function of normalized depth for main crystal orientations.
Surface information is needed in the interatomic potentials to model nanoindentation
induced plasticity in the range of 0.0 to 0.475 𝑑∕𝑎. To aid the interpretation of the
results, the values for EAM/FS were shifted by −0.1, the values for GAP were shifted
by +0.2, and the values for tabGAP were shifted by +0.1 (all values in units of 𝜏max∕𝑃 ).

the developed NNIP yields 325 GPa. For the (011) orientation, the
experimental value is 321 GPa, and NNIP method results in 320 GPa.
Lastly, for the (111) orientation, the experimental value is 309 GPa, and
our ML-based atomistic approach gives 310 GPa. Although these results
are in excellent agreement with experimental data, the behavior of the
loading curve can be obtained in a similar way by other interatomic
potentials, as discussed in our previous work [34].

3.2.2. NNIP provides an informative surface energy landscape
In Fig. 8 we show results for the normalized maximum shear stress

𝜏max∕𝑃 which is a dimensionless quantity, with 𝑃 being the applied
pressure (Eq. (14)) and 𝜏max the shear stress (Eq. (19)) calculated
by using a linear elastic contact mechanics formulation [5,34], as a
function of the displacement 𝑑 for [001], [011], and [111] main crystal
orientations [34]. A detailed explanation of the normalized shear stress
calculation is provided in the Methods section. Our MD simulations
report enough surface energy to model the nanoindentation induced
plasticity as observed at distances close to the sample surface regardless
of the crystal orientation, which is challenging for traditional and
current ML interatomic potentials for BCC Mo. The modeling of the
nanocontact of the indenter tip and the top atomic layers of the surface,
from 0 to ∼ 0.3 𝑑∕𝑎 range with 𝑑 the indentation depth and 𝑎 the
contact area, is important due to the nucleation of dislocation being
dependent on this mechanisms.

The GAP simulations provide valuable insights into the interaction
between the indenter tip and the top layer atoms for the (001) and
(011) orientations. However, for the (111) orientation, this information
is lacking, resulting in a limitation in accurately modeling the nanoin-
dentation test before the yield point. This limitation arises due to the
absence of the relevant atomic configurations in the training data for
9

this specific potential. As a consequence, the tabGAP simulations follow
a similar trend for the (111) orientation, reflecting the lack of detailed
information on the interaction between the tip and the surface atoms.

In contrast, the NNIP simulations incorporate sufficient information
on surface structures, allowing for a more accurate representation of the
contact area. This is particularly important as the contact area depends
on the applied load. The computed force between the tip and the atoms
comprising the contact area is well-modeled in the NNIP simulations.
The difference in spacing between data points in the elastic part of
the graph is attributed to variations in the loading force, pressure,
and maximum shear stress, which are considered in the contact area
analysis. In addition, accurately describing the interaction between the
indenter tip and the topmost atomic layers during the initial stages of
nanoindentation loading is crucial for analyzing the effect of loading
rate on the pop-in event. This is because the initial interaction can
significantly influence the critical load required for pop-in to occur.
Our NNIP simulations successfully captured the decrease in critical
load with increasing loading rate (Fig. S7 in the SM), as observed
experimentally [16] for different materials and in our previous work
for BCC metals [34]. This suggests that NNIP effectively models the
influence of the early-stage interaction on pop-in behavior. In contrast,
the TabGAP simulations predicted a constant critical load regardless of
loading rate, as shown in the supplementary material.

3.2.3. NNIP achieves experimentally accurate results for slip traces
In Fig. 9, we compare the results from NNIP simulations with exper-

imental observations obtained via scanning electron microscopy (SEM)
coupled with electron backscatter diffraction (EBSD) [90]. The experi-
mental setup involved indenting a (001) Mo grain using a Berkovich tip.
The computational modeling accounts for the Berkovich tip’s round-
ness, which typically has a radius ranging from 50 to 100 nm, enabling
a comparison with the early stages of nanoindentation. Upon com-
paring the MD simulation results obtained with different potentials to
the experimental data, we find that the propagation of the slip trace
along the [-110] direction closely resembles the four-folded rosette
pattern observed in the MD simulation by NNIP potentials. However,
notable discrepancies arise in the representation of surface information,
particularly at this crystal orientation, where the NNIP simulations
managed to capture the formation of pile-ups in good agreement with
the experimental observations. While TabGAP and EAM potential ex-
hibits limitations in representing the formation of pileups around the
indenter tip.

From the results depicted in Fig. 8, it is evident that the inter-
atomic potentials have limitations in representing the plastic deforma-
tion mechanisms across various crystal orientations. Specifically, for
the [001] orientation, NNIP demonstrates excellent agreement with
experimental data regarding surface morphology and mechanical prop-
erties. Motivated by these findings, we further investigate the surface
behavior of the Mo sample at the [111] orientation, where NNIP has
shown improved representation of the transition from elastic to plastic
deformation compared to other potentials. In Fig. 10, we display the
atomic displacement mapping of the [111] Mo sample obtained by
NNIP in (a), EAM/FS in (b), GAP in (c), and tabGAP in (d) at the
maximum indentation depth. The surface of the sample clearly shows
displaced atoms aligned with the slip planes, forming the characteristic
three-fold rosette pattern typical for BCC materials in the [111] orien-
tation, as illustrated by the NNIP results in Fig. 10(a)). This pattern is
created by [112̄], [1̄01], and [01̄1] planes [5,6]. To assist in identifying
the shape of the rosette, we have added orange lines, reminiscent of
what can be observed in SEM images of BCC materials [9]. Here NNIP
simulations are in good agreement with typical observations of pile-up
evolution. However, it is important to note that neither GAP, tabGAP,
nor EAM can provide a comprehensive description due to their lack of
information about open boundary simulation under external loading.



Acta Materialia 277 (2024) 120200A.D. Naghdi et al.
Fig. 9. Slip traces and pileup of [001] Mo at the maximum indentation depth for NNIP
in (a), TabGAP in (c), and EAM in (d), compared to an experimental SEM observation
reported in Ref. [90] (b). The four-fold rosette is well modeled by NNIP where the slip
trace propagates on the [-110] and [1-10] planes in good qualitative agreement with
the experimental result.

Fig. 10. Pileups and slip trace for the [111] Mo samples , at the maximum indentation
depth, using different methods: NNIP in (a), EAM/FS in (b), GAP in (c), and tabGAP
in (d). In this analysis, we have included an orange line to emphasize the 3-fold
rosette characteristic commonly seen in the indentation of BCC samples where NNIP
simulations are capable to model it [5,20,34]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
10
Fig. 11. Identified defects of indented (111) Mo sample by BDA method at different
depths by NNIP, EAM, TabGAP, and GAP approaches. The various defect types are
depicted using different colors: gray spheres represent surface atoms in direct contact
with the indenter tip, blue spheres indicate edge dislocations, light-blue spheres repre-
sent atoms in the vicinity of vacancies, yellow spheres depict twin/screw dislocations,
and black spheres highlight unidentified defect atoms. The nucleation and propagation
of edge dislocations on the {111} slip family are observed, which then evolve into
prismatic loops. In addition, identified slip traces and pile-ups are well modeled by
NNIP simulations showing the well-known three-fold symmetric rosette depths below
1.45 nm that are formed by [112̄], [1̄01] and [01̄1] planes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.2.4. NNIP demonstrates discernible dislocation nucleation stages
Fig. 11 illustrates the defects detected using the BCC Defect Anal-

ysis (BDA) method (see Methods) in a (111) Mo sample at different
depths [83]. The NNIP nanoindentation simulations in the initial stages
of loading process notably enhance the description of the interaction
between the indenter tip and the atoms in the uppermost layers of the
surface (see Fig. 11(a)). In this context, a few Mo atoms located at the
very top surface layer are recognized as surface defects. Additionally,
Mo atoms situated beneath these surface defects begin to coalesce,
forming edge dislocations that have the potential to evolve into shear
loops, contrary to the other simulations where the interatomic po-
tentials are not aware of this mechanism. NNIP simulations are also
anticipated to accurately capture the nucleation and propagation of
shear loops on {112} planes (See Fig. 11(b)), as observed experimen-
tally in BCC materials [5,9,91]. Furthermore, NNIP effectively models
the nucleation of loops through a lasso mechanism, a behavior where
GAP and tabGAP induced the formation of multiple loops, as observed
in Fig. 11(c) at a depth of 1.45 nm. For NNIP, at the maximum
indentation depth, it is evident on the sample’s surface that displaced
atoms align with the slip planes in a characteristic three-folded rosette
pattern typical for BCC materials in the [111] orientation (Fig. 11(d)),
formed by [112̄], [1̄01], and [01̄1] planes. In contrast, neither GAP
nor tabGAP, nor EAM, can adequately incorporate this description
due to the lack of information regarding pileup formations. Besides,
the nucleation of more loops is noted, but the circumference of the
second loop is larger than that of the first loop. The EAM and tabGAP
simulations demonstrate a slower and faster process, respectively.

The variations in dislocation and loop nucleations across different
potentials originate from two factors: (1) the prediction of the GSFE
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+ SIA curve (Fig. 6(c)) varies across different potentials, and (2)
the indentation surface energy as a function of depth differs among
potentials, as demonstrated in Fig. S9 of the SM.

4. Discussion and conclusions

Interatomic potentials developed before the present work, although
adequate for many applications, need to be improved for nanoinden-
tation simulations. For example, J. Byggmästar et al. [63] developed a
GAP potential for Mo, demonstrating accuracy and transferability for
elastic, thermal, liquid, defect, and surface properties. However, this
potential failed to produce reliable data for the shear stress in the elastic
region in the early stages of the nanoindentation simulation. Further-
more, in contrast to the NNIP developed here, many prismatic loops
were nucleated during the nanoindentation (see Fig. 11), potentially
due to insufficient information in the energy landscape regarding the
dislocation cores, a fact that was illustrated based on the similarity of
the GSF configurations with the dislocation cores as depicted in Fig. 6.

The tabGAP potentials are designed for complex multi-element ma-
terials [48], employing simple low-dimensional descriptors. Although
tabGAP potentials have notable accuracy for entropy alloys [62], the
same issues as the GAP potential arise when it comes to single element
BCC Mo. As mentioned earlier, the tabGAP potential leads to nucleation
of too many prismatic dislocation loops in the nanoindentation simula-
tions (see Fig. 11). Moreover, accurate predictions of shear stress in the
initial phases of the nanoindentation simulations were not achieved.

The EAM/FS potential utilized in the present work [65], originally
designed for radiation damage simulations, failed to accurately produce
GSFE curve for Mo in both pristine crystalline and GSF configurations
representing dislocation cores. Consequently, it is unclear whether or
not this potential can reliably predict dislocation nucleation during
indentation. In addition, similar to the other potentials, it does not
correctly predict the nanoindentation shear stress.

Considering the challenges faced in nanoindentation simulations,
the presence of a well-developed methodology to tackle these issues
would be highly beneficial. In this work, we met this goal by in-
troducing to the training dataset new configurations which resemble
the local atomic environments of an indented sample. The similarity
measurements presented here ensure the relevance of the newly in-
troduced structures to a nanoindentation simulation. To the best of
our knowledge, this study represents the first attempt to develop a
MLFF specifically designed for nanoindentation simulations. The novel
configurations introduced here could aid the development of MLFFs for
other materials.
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