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Nanoscale hardness in polycrystalline metals is strongly dependent on microstructural features that are believed 
to be influenced from polycrystallinity — namely, grain orientations and neighboring grain properties. We 
train a graph neural networks (GNN) model, with grain centers as graph nodes, to assess the predictability 
of micromechanical responses of nano-indented 310S steel surfaces, based on surface polycrystallinity, captured 
by electron backscatter diffraction maps. The grain size distribution ranges between 1–100 μm, with mean size 
at 18 μm. The GNN model is trained on nanomechanical load-displacement curves to make predictions of nano-

hardness, with sole input being the grain locations and orientations. We explore model performance and its 
dependence on various structural/topological grain-level descriptors (e.g. grain size and number of neighbors). 
Analogous GNN-based frameworks may be utilized for quick, inexpensive hardness estimates, for guidance to 
detailed nanoindentation experiments, akin to cartography tool developments in the world exploration era.
Polycrystals consist of complex crystalline grain networks that are 
known to dictate multiscale mechanical responses [1]. Nevertheless, 
inherent microstructure-property-process correlations may not be typ-

ically captured by constitutive relations and contain overwhelming 
complexity [2]. A remarkable exception is the famous Hall–Petch re-

lationship [3,4], connecting grain size and strength [5,6]. Primary 
strengthening mechanisms, such as dislocation pile-ups and slip transfer 
capacity (across adjacent grains), are closely tied to intrinsic geometry 
of grains as well as their crystallographic orientation and associated de-

gree of misalignment across boundaries [7–10]. Indeed, conventional 
phenomenological frameworks are limited in these respects, thus signif-

icantly restricting their predictive capacities [1]. In this paper, we con-

struct a machine-learned graph neural network (GNN)-based framework 
from a fairly large ensemble of intrinsic structural features associated 
with the complex polycrystallinity of 310S steel. Using a relevant set 
of nano-mechanical tests, our supervised model is trained to produce 
interpretable predictions of micromechanical responses and indenta-

tion hardness solely based on (an appropriate suite of) microstructural 
predictors. The proposed framework may complement elaborate experi-

mental and numerical investigations of metals’ surface polycrystallinity 
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by drastically improving material surface exploration for mechanical 
purposes.

Graph-based representations of polycrystals have been quite com-

mon in the attempt to describe microstructure-property relation-

ships [11–14]. However, individual grain behaviors in polycrystals 
have been challenging to identify, with a wealth of constitutive pa-

rameters being commonly used to model them [14]. GNNs provide a 
way to capture and learn these behaviors in a consistent way, that 
can then be used to predict mechanical responses, solely based on 
the grain environment. GNNs combine conveniences of both conven-

tional (feature-based) machine learning methods and deep learning, but 
with unstructured architectures that are more adherent to real physical 
contexts [15–18]. GNN has been used in recent applications in mate-

rials science relevant to dynamics of glassy systems [19,20] as well as 
property predictions in crystalline materials [21] and some aspects of 
polycrystalline metals [22].

Nanoindentation tests provide valuable insights into complex mi-

crostructural strengthening and hardening mechanisms at the nanoscale, 
albeit with size effects [23] that mask bulk microstructural responses 
[24–26]. Electron microscopy has been shown to significantly assist 
the interpretation of nanoindentation results in a wealth of materi-
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als [27–29]. Here, we integrate nanoindentation data, informed by 
electron backscatter diffraction (EBSD) mapping, with a supervised 
data-driven approach based on the graph neural net model to infer 
micromechanical responses and grain-scale hardness from the surface 
polycrystallinity information (see the graphical abstract). We construct 
and train the GNN using an EBSD orientation imaging map containing 
individual grains’ orientations and neighboring grain properties which 
was supplemented by a micromechanical data set corresponding to a 
nanoindented low-carbon 310S stainless steel (alloyed with Ni and 
Cr). The latter information consists of grain-scale load-displacement 
curves to be used as response variables for the prediction task. Mi-

crostructural predictors include an exhaustive list of (quantitative and 
categorical) grain-related characteristics with quite different scales that 
are all inferred and post-processed from the EBSD grain map (see 
Fig. 1). This includes grain size (area), perimeter, length of in-

ner boundaries (subBoundaryLength), diameter, perimeter of a 
circle with the same area (equivalentPerimeter), perimeter di-

vided by equivalent perimeter (shapeFactor), a boundary grain 
(isBoundary), a grain with inclusions (hasHole), an inclusion grain 
(isInclusion), number of neighboring grains (numNeighbors), Eu-

ler orientations (phi1, Phi, phi2) as well as the misorientation angle 
(misOrientationAngle) between neighboring grains and associated 
boundary length (boundaryLength). The grains’ (numerical) descrip-

tors are typically distributed over a broad range of scales with large 
variations in the associated nanomechanical response. The grain size 
distribution, as an example, has a lower cutoff at about 1 μm and mean 
value of 18 μm but is largely skewed with a long tail that extends up 
to 100 microns. Nevertheless, the overall predictive accuracy of our 
GNN model is fair given a relatively limited size of statistics (less than 
200 sample points). This is verified in a systematic way by considering 
the learning process and its dependence on the training size as well as 
descriptor sets of varying size.

On top of high predictive accuracy, GNNs provide highly inter-

pretable results and qualitative insights about underlying correlations 
between structural metrics and predicted nanomechanical response. 
More specifically, we find the grain diameter as a relevant hardness 
predictor which is in agreement with physics principles and could 
be verified in the context of the well-established Hall-Petch relation-

ship, connecting the former and polycrystalline metals’ strength (and/or 
hardness). In this framework, machine-learned models may acceler-

ate experimental investigations relevant to the hardness exploration in 
polycrystalline metals. In addition to bulk mechanical properties (i.e. 
indentation hardness), our model may also be fine-tuned to accurately 
forecast indentation-induced strain bursts (i.e. pop-ins) [30] and asso-

ciated statistical distributions solely based on microstructural inputs.

The sample preparation, nanoindentation experiments, and mi-

crostructural characterization of the low-carbon 310S stainless steel but 
high in Ni (19 −22%) and Cr (24 −26%) content are detailed in [31]. We 
performed nanoindentation tests using the NanoTest Vantage system 
designed by Micro Materials Ltd. Hardness measurements were made at 
room temperature by using a Berkovich diamond indenter tip in a load-

controlled manner at various depths. Dynamics of the applied force is 
given in Fig. S1(a) of Supplementary Materials (SM) with the maxi-

mum load level, denoted by 𝑓max, exerted over the loading period of 
duration 𝑡load and following (first) dwell period 𝑡0

dwell
. The specimen 

is subsequently unloaded to a residual force 𝑓min over the time scale 
𝑡unload before it goes through the second dwell period of duration 𝑡1

dwell
for thermal drift corrections. The experiments were repeated over 12
distinct 𝑓max values selected between 0.25 − 10 mN and 15 different in-

dentation points per 𝑓max which were chosen to be about 20 μm (the 
mean grain size) apart in distance. This led to 180 mechanical tests 
in total with various penetration depths ranging between 40 − 400 nm. 
Here 𝑓min = 0.25 mN and 𝑡1

dwell
= 60 s. We also set 𝑡load = 10 s, 𝑡0

dwell
= 2 s, 

𝑡unload = 5 s for 𝑓max > 5 mN and 𝑡load = 5 s, 𝑡0
dwell

= 1 s, 𝑡unload = 3 s oth-

erwise. As the outputs, we measure indentation depths as a function of 
2

time with a temporal resolution of order Δ𝑡 ≃ 0.05 s, as in Fig. S1(b). We 
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Fig. 1. The EBSD map used to extract numerical and binary microstructural 
variables as the model input.

note that the average size of the indenter imprint should vary between 
300 nm and 3 μm. Given the mean grain size, it follows that the inden-

ter size is at least one order of magnitude smaller than the former size. 
The thickness of the tested sample is also approximately 1 mm (order 
55 − 60 grain diameters).

The microstructural characterization and EBSD analysis of the in-

dented sample was performed through a ThermoFisher Scientific Helios 
5 UX scanning electron microscope equipped with an EDAX Velocity Pro 
EBSD system. The grain mapping was performed using a 20 keV elec-

tron beam with a 6.4 nA probe current. The EBSD map was subsequently 
reconstructed through an EDAX OIM Analysis 8 software by grouping 
sets of (at least 2) connected and similarly-oriented points (within ±5◦
uncertainties in angle) into individual grains. Crystallographic orien-

tations, expressed in terms of Miller indices, can be assigned to each 
reconstructed grain (Fig. 1) to be used as model inputs for the GNN 
framework.

Nanoindentation load-depth curves were obtained from tests per-

formed independently on 𝑛ind = 131 individual grains (out of 𝑛𝑔 = 1080
grains) based on a load-controlled protocol described above. We dis-

cretized the corresponding displacement and force data (excluding the 
second dwell period) as a function of time into regular arrays of size 
𝑛dis = 100, as in Fig. S3 and S4, and assembled the former in the target 
matrix 𝑌𝑛ind×𝑛dis

to serve as training and test examples for our network. 

For the case of (large) grains with multiple indentation sites, we simply 
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used the average displacement curves and our network was trained to 
predict deformation for individual grains. To reconstruct the network 
from the EBSD map (Fig. 1), each grain is treated as a separate node 
with index 𝑖 and 𝑖 = 1...𝑛𝑔 in our graph. The graph connectivity is based 
on neighboring grains; that is, grain index 𝑖 and 𝑗 sharing a common 
border on the grain map are connected by an edge 𝑖𝑗 (see the graphical 
abstract).

As a nodal feature, every node is assigned two dimensional Cartesian 
coordinates (x,y) associated with the center of each grain. Additional 
nodal attributes extracted from the original map (and expected to corre-

late with the mechanical response) include grain size (area), perime-
ter, length of inner boundaries (subBoundaryLength), diameter, 
perimeter of a circle with the same area (equivalentPerimeter), 
perimeter divided by equivalent perimeter (shapeFactor), a bound-

ary grain (isBoundary), a grain with inclusions (hasHole), an in-

clusion grain (isInclusion), and number of neighboring grains 
(numNeighbors). The discretized force vector (as a control parame-

ter in the experiment) was concatenated with the above set of struc-

tural attributes of dimension 𝑛𝑓 = 12 with the assembled feature ma-

trix given as 𝑋𝑛ind×(𝑛dis+𝑛𝑓 ). In what follows, we do not consider phi1,

Phi, and phi2 within the feature matrix but only include them in a 
separate GNN model to be discussed in SM. To avoid features with 
significant variations in scale, every column of the above matrix was 
𝑧-scored independently to have a zero mean and unit variance. Further-

more, the edges of the graph accommodate the misorientation angle 
(misOrientationAngle) between two neighboring grains 𝑖 and 𝑗
along with the associated boundary length (boundaryLength) as their 
features [32].

The full set of nodal and edge-based features, i.e. {𝑣𝑖}𝑖=1...𝑛𝑔 and 
{𝑒𝑖𝑗}𝑖,𝑗<𝑖 in the input graph, is initially encoded by an “Encoder” block 
and subsequently processed via a “Core” structure with 𝑛proc = 3 rounds 
of processing based on the message-passing framework [15]. The “De-

coder” block returns an output graph (with the exact same structure 
as the input one) based on the Core’s outcome but with predicted at-

tributes, i.e. expected displacements, based on the nodal and edge-based 
descriptors. Within the message-passing framework, the GNN applies 
two learning multilayer perceptrons (mlp) including an edge-based 𝜙𝑒

and node-based 𝜙𝑣 to each edge and node in order to compute updated 
node and edge attributes iteratively. The two mlp’s have identical ar-

chitectures and are composed of two hidden layers and eight neurons 
per layer with a tangent hyperbolic activation function.

The optimization of the GNN model was performed by minimizing 
the loss function based on the mean-squared error (MSE) between the 
actual displacements and those outputted by the GNN using the stochas-

tic gradient descent over the entire parameter space with a learning 
rate of 10−3. The graph data was split into training and testing sets and 
further trained using a four-fold cross validation. We note that both 
sets (the training and testing examples) are present within the same 
graph and that the node labels associated with the test data (i.e. dis-

placements) are invisible during the training process. We use the GNNs 
library in Python which is DeepMind’s implementation of graph neural 
nets based on Google’s Tensorflow [15].

We first investigate the GNN model and assess its predictive power 
of nanoindentation responses based on the grains’ surface structure and 
given history of applied forces. This includes a systematic analysis of the 
learning process of GNN from different subsets of existing grain-level 
predictors and varying training sizes. As a further validation, we extract 
grain nano hardness at various depths from the predicted response and 
quantify how well the predictions compare with the actual data.

The evolution of the GNN performance in minimizing the loss func-

tion is illustrated in Fig. S2(a) and (b). The learning rate corresponding 
to the training and test data are shown as a function of the number 
of iterations. The GNN training involves 92 training cases (70%) and 
39 test observations (30%). Applying the GNN model to the training 
data set lead to a fairly low training set error (MSE < 10), showing a 
3

decay of at least four orders of magnitude after about 104 iterations. 
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Fig. 2. a) Training and b) test errors plotted against area. Actual (symbols) 
and predicted (dashdotted curve) load-depth curves associated with a c) good 
and d) poor prediction within the test set. The insets show the corresponding 
grain maps.

However, the test error rate appears to decrease more slowly as the op-

timization iterations proceed, decaying around two order of magnitude 
before it reaches a noise floor. Fig. S2(c) and (d) show learning curves 
for the GNN-based prediction task, plots of MSE against the (relative) 
size of the training set. Here the results correspond to the four-fold 
cross-validation estimating the performance of the graph network over 
the training sets of varying sizes (and testing sets of a fixed size). The 
performance tends to improves as the (relative) training set size in-

creases to 50% (less than 50 sample points) and increasing the number 
further leads to a small improvement.

The predictive power of GNN as a function of variable area is 
shown in Fig. 2 with the training and testing sets in Fig. 2(a) and 
Fig. 2(b). As expected, the latter displays larger variations in terms of 
the test errors (almost three orders of magnitude in MSE). The observed 
(anti-)correlations in both data sets indicate that, on average, the GNN 
exhibits a better performance with increasing grain size — cf. Fig. 2(c), 
Fig. 2(d), Fig. S3, and Fig. S4. Fig. S5 also compares the test errors as-

sociated with the linear regression model, 𝑘-nearest neighbors, and the 
graph network without edge attributes which seem to be outperformed 
by GNN.

Fig. 3 presents a feature importance analysis of the GNN model 
for all the predictor subsets (excluding the binary metrics). We pre-

selected six quantitative variables including area, perimeter, diam-
eter, equivalentPerimeter, shapeFactor, and numNeighbors
to probe the training and test errors for every possible subset of size 𝑘 =
1...5. In every analysis, the nodal coordinates (x, y) as well as the edge-

based predictors misOrientationAngle and boundaryLength are 
incorporated as a fixed set of descriptors that are supplemented by ad-

ditional variables as described above. Overall, the training errors in 
Fig. 3(a) and the associated base-line do not seem to be very sensitive to 
the subset size 𝑘. However, the minimum MSE corresponding to the test-

ing set in Fig. 3(b) shows meaningful variations with 𝑘 featuring a dip 
at 𝑘 = 4 that corresponds to perimeter, diameter, equivalent-
Perimeter, and numNeighbors as predictor variables (see the table). 
In fact, the model performance will drastically degrade by including a 
subset of size 𝑘 = 5. Out of the six numeric variables, diameter and

shapeFactor are the most and least repeated entries of the table in 
Fig. 3 and, therefore, can be viewed as the most and least relevant de-
scriptors. We note that The former is an essential ingredient within the 
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Fig. 3. Validation curves determining a) training and b) test errors for varying sets of descriptors. Here symbols correspond to all possible subsets of size 𝑘 = 1...5
corresponding to the full set of numeric variables area, perimeter, diameter, equivalentPerimeter, shapeFactor, numNeighbors. The solid curves 
indicate minimal errors corresponding to each 𝑘 and the table denotes the associated set of predictors (relevant to the testing set) by †.

Fig. 4. Hardness maps (including indented grains only) associated with the a) actual data ℎact b) GNN prediction ℎpred c) scaled absolute difference between predicted 
and actual data |ℎpred −𝐻act|∕|ℎpred|. The color map in c) is on logarithmic scale. The hardness is measured in Gpa. The hatched areas denote non-indented grains. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
empirical Hall-Petch relationship making predictions of hardness based 
on mean grain size.

We infer grain-scale hardness from the GNN-predicted load-depth di-

agrams following the Oliver-Pharr framework [33]. The hardness maps 
associated with the indented grains are shown for the actual and pre-

dicted data sets in Fig. 4(a) and (b) as well as the scaled difference 
between the former and the latter as in Fig. 4(c). The actual map in 
Fig. 4(a) indicates that harder grains (in red) are, on average, smaller 
in size. We note that the bluish (reddish) colors in Fig. 4(c) indicate 
regions with the small (large) relative errors. The scatter plot of the 
predicted (ℎpred) and actual hardness (ℎact) is also shown in Fig. 5. The 
predictions associated with the testing set are, apart from a few outliers, 
reasonably distributed around ℎpred = ℎact. This is further quantified 
by a fairly high Pearson’s correlation coefficient 𝜌ℎ = ⟨ℎ̂pred ℎ̂act⟩ with 
𝜌test
ℎ

≃ 0.7. Here ℎ̂ ≐ (ℎ − ⟨ℎ⟩)∕var
1
2 (ℎ) with the angular brackets ⟨.⟩ de-

noting an average. As shown in Fig. S6(d), the full set of nodal features 
including grains’ Euler angles leads to a slightly poorer model per-

formance which might suggest that the misorientation angles between 
neighboring grains could be a more relevant factor in predicting grain-

level hardness. Overall, the observed deviations are most likely related 
4

to the imperfect surface preparation, probing areas with precipitates 
Fig. 5. Scatter plot of the predicted hardness and the actual values corre-

sponding to the training set (circles) and the test set (squares). The diagonal 
dashdotted line indicates ℎpred = ℎact. The hardness is measured in Gpa.

(which are very popular for the steels with this chemical composition), 
or indenting regions rich in small grains. Another source of discrepancy 
might also stem from potential effects of missing bulk grains under the 
indented surface that are masked in our planar graph network repre-
sentation.
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We have studied the effectiveness and robustness of a GNN-based 
supervised machine learning model in predicting mechanical nanoin-

dentation response from experimentally-measured grain microstructure 
replicated as a graph. Microstructural patterns are encapsulated in the 
GNN via a set of node-based and edge-based hidden layers that learn 
from nanoindentation-induced deformation in a supervised learning 
context. We have probed hardness as an experimentally measurable mi-

cromechanical property to test the predictive power of the GNN. A rich 
set of grain-level structural features was extracted from the grain map 
and the robustness and accuracy of the prediction task was verified with 
respect to varying subsets of selected descriptors.

Given the convenience of GNNs (i.e. predictiveness, speed, and in-

terpretability) in the hardness prediction, the proposed framework may 
also be augmented to account for indentation-induced pop-in behavior 
abrupt displacement jumps (in a load-controlled indentation) and as-

sociated statistical distributions solely based on microstructural inputs. 
As pop-ins typically trigger as a result of the interplay between dislo-

cations and embedding grain boundary, one might envision the use of 
more elaborate indicators of microstructure (such as dislocation den-

sity) to be incorporated as nodal and/or edge-based ingredients.

As a final remark, applications of data-driven methodologies shall 
not be regarded as substitutes but rather complements to laboratory-

based measurements and/or high-throughput physics-based simula-

tions. Machine-learned models require smooth access to well-maintain-

ed, accurate, and reusable data sets, relevant to materials’ micro-

structure and associated (micro-)mechanical response, which are oth-

erwise impossible to measure in the absence of experimental/numeric 
observations. In fact, a coherent integration of the above methodologies 
will be essential in a way that they guide one another to achieve the de-

sired speed, interpretability, and predictiveness of outcomes. Our GNN 
development provides a fine example in this context, where a fairly lim-

ited number of surface measurements (order 102 indentation tests) was 
performed for the prediction task. Nevertheless, the model outcomes 
will allow us to efficiently infer a full hardness cartography map from 
the prescribed force dynamics, as in Fig. S1(a), and a fine-scale EBSD 
analysis of nearly 103 grains.
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