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Prediction of optical properties 
of rare‑earth doped phosphate 
glasses using gene expression 
programming
Fahimeh Ahmadi 1, Raouf El‑Mallawany 2, Stefanos Papanikolaou 3,4 & Panagiotis G. Asteris 5*

The progression of optical materials and their associated applications necessitates a profound 
comprehension of their optical characteristics, with the Judd–Ofelt (JO) theory commonly employed 
for this purpose. However, the computation of JO parameters (Ω2, Ω4, Ω6) entails wide experimental 
and theoretical endeavors, rendering traditional calculations often impractical. To address these 
challenges, the correlations between JO parameters and the bulk matrix composition within a series 
of Rare‑Earth ions doped sulfophosphate glass systems were explored in this research. In this regard, 
a novel soft computing technique named genetic expression programming (GEP) was employed to 
derive formulations for JO parameters and bulk matrix composition. The predictor variables integrated 
into the formulations consist of JO parameters. This investigation demonstrates the potential of GEP 
as a practical tool for defining functions and classifying important factors to predict JO parameters. 
Thus, precise characterization of such materials becomes crucial with minimal or no reliance on 
experimental work.

Keywords Phosphate glass, Rare-earth ions, Optical properties, Judd–Ofelt parameters, Gene expression 
programming

In recent times, there has been extensive exploration of the optical absorption and luminescence characteristics of 
rare earth ions (REIs) doped glasses based on borate, silicate, phosphate, and tellurite compositions. There is high 
demand for these materials in many technological and commercial applications, containing fluorescent display 
technology, optical detectors, bulk lasers, optical fibers, waveguide lasers, and optical  amplifiers1–4. Notably, REIs 
such as  Eu3+,  Sm3+,  Dy3+,  Er3+, and  Pr3+ are commonly utilized for the development of various optical  devices5,6. 
To obtain efficient luminescence from REIs, a suitable glass host must be carefully selected.

A significant amount of attention has been given to phosphate glasses compared to silicate and borate glasses. 
This preference is attributed to their distinctive features, including high transparency, low melting point, high 
thermal stability, and high gain  density7,8. These characteristics primarily stem from the notable solubility of 
RE ions, along with low refractive index and dispersion. Further, sulfate ions dissolve readily in the phosphate 
glass matrix.

These glass systems form dithiophosphate (DPT) molecules due to the relatively poor interaction between 
sulfate and metaphosphate ions. Since sulfate and phosphate ions interact weekly and inconsistently, many REIs 
can be incorporated into this process. Consequently, it is anticipated that this glass system will enable high effi-
ciency of luminescence with low non-radiative losses.

The Judd–Ofelt (JO) theory has emerged as a highly consequential framework with extensive applications in 
chemistry, material science, and related academic disciplines. These applications encompass solid-state  lasers9,10, 
thermal  sensors11,12, optical amplifiers, up-conversion13, and diverse biological  contexts14,15. The JO theory is 
really handy because it helps us understand how materials interact with light, like how likely they are to absorb 
or emit light, and how they behave when they do. But it’s not something you can just pick up easily; you need to 
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know a lot about how solid materials and quantum stuff work. Plus, getting the data needed for JO theory involves 
making very specific materials and doing lots of precise experiments, which takes a long time. And on top of all 
that, you also have to measure how the material absorbs light to get the right info for JO theory and other tests.

The JO theory is elegant but often tough to work with because of all the steps involved in making materials, 
measuring them, crunching the numbers, and analyzing the results. Despite these challenges, there’s a good 
reason to look for simpler ways to get the same kind of info, especially since JO theory has so many useful 
applications. That’s why we’ve come up with a new way to figure out JO parameters indirectly, using a method 
called GEP, in glasses doped with  RE3+ ions. This could make it a lot easier for scientists to get the data they need, 
potentially changing the way we do research in this field.

Because artificial intelligence (AI) approaches can create nonlinear correlations between input and output 
data, they have become increasingly popular in numerous science and engineering  disciplines16–22. A signifi-
cant body of research has been dedicated to leveraging AI approaches for predicting structural properties of 
 glasses23–27. Gaafar et al.25 employed the artificial neural network (ANN) method to forecast critical parameters 
for roughly thirty glass compositions, such as moduli of elasticity, density, and ultrasonic-wave velocities. The 
anticipated outcomes showed agreement with experimentally determined parameters. Additionally, they used 
an AI model to simulate ultrasonic wave velocities, density, and elastic moduli for different tellurite glasses, 
obtaining consistency between experimental and predicted  results28. Their model was further utilized in the 
manufacturing of four niobium-lead-tellurite glass systems, where experimental findings indicated that  Nb2O5 
serves in the role of a framework modifier, contributing oxygen ions to form  [TeO3] trigonal pyramids from 
 [TeO4] trigonal bi-pyramids. Furthermore, using a large dataset, Deng carried out a thorough machine-learning 
analysis to estimate the density of oxide glasses as well as Young’s modulus, shear modulus, and Poisson’s  ratio29.

This paper focuses on the investigation of twelve different series of sulfophosphate glass, comprising 51 glass 
samples synthesized through the melt-quenching method. Additionally, 20 glass samples were collected from 
the literature. The study introduces a GEP model designed to predict JO parameters for the total of 70 samples. 
This GEP model enables indirect measure of JO parameters, eliminating the need for expensive oxide materials.

Research significance
The estimation of the optimal optical properties for rare-earth doped phosphate glasses is a challenge engineering 
task due to its multidimensional nature, involving twelve input and three output parameters. Classical computa-
tional techniques such as regression analysis are insufficient for addressing this complexity, leaving a gap in our 
understanding of these materials’ behavior. This complexity arises from the diverse range of parameters influenc-
ing the optical characteristics, spanning from the bulk matrix composition to the presence of rare-earth dopants.

Given this complexity, surrogate soft computing methods such as Gene Expression Programming (GEP) 
emerge as essential tools for tackling such challenges. Unlike classical techniques, GEP excels in capturing the 
nonlinear relationships inherent in these multidimensional problems. This study utilizes GEP to reveal the 
complex and strongly nonlinear nature of predicting optical properties, with co-authors from both materials 
science and machine learning fields contributing their knowledge.

The significance of this research has mainly to do with its potential to contribute to more reliable estimation 
of optical properties, reducing the need for extensive experimental work. By developing GEP-based surrogate 
mathematical models, this study aims to unveil the fundamental relationships between input and output param-
eters, contributing to a holistic design and development of novel optical materials. Moreover, by emphasizing 
the importance of reliable and sufficient databases, this research underscores the crucial role of data quality in 
computational modeling, further emphasizing the multinstitutional and interdisciplinary collaboration such as 
experts from materials science and data science learning. Summarizing, this study not only addresses the chal-
lenge in materials science but also demonstrates the great importance of metaheuristic computational techniques 
such as GEP which provide us analytical formulas. By bridging the gap between theory and experiment, the 
derived and proposed closed form GEP-based equations paves the way for accelerated innovation in the field 
of optical materials, showcasing the collaborative efforts of researchers from diverse scientific backgrounds and 
supporting corresponding academic lectures on the subject.

Gene expression programming
Gene Expression Programming (GEP), devised by  Ferreira29, represents a revolutionary method for developing 
mathematical models. Based on the principles of evolutionary computation inspired by inherent evolution, GEP 
provides a solution in the shape of a tree configuration generated from a specific dataset. The fundamental genetic 
material in GEP is characterized by linear chromosomes comprised of genes which architecturally structured 
into a head and a tail. These chromosomes serve as a genome and undergo modifications through processes such 
as mutation, root and gene transposition, gene recombination, and also one and two-point  recombination30.

The unique feature of GEP lies in the encoding of expression trees within these chromosomes, which become 
the subject of selection. This separation into distinct entities, the genome, and the expression tree, with specialized 
functions, contributes to the algorithm’s exceptional efficiency, surpassing existing adaptive techniques. The GEP 
algorithm unifies the predominant aspects of two preceding inheritance algorithms, namely genetic algorithms 
and genetic programming, with the aim of overcoming their respective limitations. In GEP, the chromosome 
genotype mirrors that of a genetic algorithm, while the phenotype takes the form of a tree structure that varies 
in size and length, akin to genetic programming. By overcoming the constraints of earlier algorithms regarding 
the double function of chromosomes, GEP ensures the sustained health of offspring chromosomes through 
multiple genetic operators, achieving faster rates than genetic  programming31.

The logical interdependence among multiple variables, if present, may be encapsulated within a function, 
potentially an accurately describable one. This function can encompass algebraic operators such as + , −, *, /, 
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Boolean logic operators including OR, AND, and IF, or a diverse range of algebraic functions. Clearly, the scru-
tiny of the logical connection among variables is  imperative32. In the application of GEP algorithm to discern a 
relationship between variables a and b with y, a linear chromosomes population is initially generated. In these 
chromosomes, each position of the genes can accommodate one of the variables. Once the chromosomes are 
constructed and populated with variables, the subsequent step involves evaluating the fitness of each individual 
(chromosome) within the given generation in which chromosomes are expressed as expression trees (ET). 
Analogous to a protein in a natural cell that dictates a gene’s phenotype, an ET serves as a representation of the 
chromosome’s structure and function. This process facilitates the exploration and understanding of the logical 
relationships among variables by embodying them in a tree-like structure, aiding in the comprehensive analysis 
of complex functions and their dependencies.

Ferreira29 introduced an ingenious and effective language known as Karva for the expression of genes and 
the generation of ETs. In this system, a mathematical equation or program is formulated and obtained from each 
chromosome. These chromosomes are comprised of random terminals and functions, providing a structured 
representation of genetic information.

To evaluate the performance of these chromosomes, fitness is determined by comparing the calculated value 
of y through the equation against the actual values for specified points of a and b, given in fitness cases. The 
closeness of the calculated y values to the actual values at different points signifies the accuracy of the equation, 
and a smaller difference results in higher fitness.

In the initial generation, fitness is computed for each chromosome, and their scores contribute to the selec-
tion process for the next generation, proportional to their overall fitness. Additionally, the fittest individual in 
any generation, without undergoing the procedure of selecting, is directly carried over to the next generation. 
This methodology ensures the continual refinement of the population, emphasizing the preservation of superior 
genetic material for subsequent generations in the evolutionary process.

In the progression to the subsequent generation, genotype as the linear state of the chromosomes from the 
current generation is employed. This entails the presence of full-length chromosomes, irrespective of whether 
they are active or inactive, in the subsequent generation. Notably, the inactive part of a gene in the current genera-
tion may undergo activation, becoming a fully adaptable component through a mutation in the next generation.

Defining the functions, terminals, fitness function, linking function, chromosomes’ structure as well as deter-
mining the features of the operators and ultimately implementing the algorithm are the fundamental steps in 
designing a GEP algorithm. The initial step in generating the subsequent generation involves the replication 
process, which is facilitated by the Roulette Wheel method. Conceptually, the wheel rotates and selects a chromo-
some at each turn, a process executed by creating and allocating random numbers. Higher rated chromosomes, 
determined by their fitness, have a greater likelihood of being chosen. Importantly, the selection process is akin 
to the random selection observed in natural evolution, bringing the algorithm closer to this fundamental aspect.

This replication procedure continues until the specified number of chromosomes from the current genera-
tion is transferred to the next, maintaining a consistent number of chromosomes throughout the evolutionary 
process. This perpetuates the genetic diversity and adaptability of the population over successive generations. 
Following the replication process, the restructuring phase commences, signifying the sequential application of 
genetic operators on identical chromosomes in the prescribed order outlined in the algorithm. This sequential 
transformation of chromosomes mirrors the natural evolution process, gradually converging towards an ideal 
equation of interest after a series of generations.

In this iterative process, new-generation chromosomes are generated, and their successive assessment ensures 
the continual refinement of the population. This simulation of natural evolution through the application of 
genetic operators enhances the adaptability and performance of the chromosomes over time. To manage com-
putational resources effectively, a limitation can be assigned for the iterations number of the algorithm. This 
precautionary measure prevents excessive memory and time consumption, allowing for the termination of the 
algorithm if it fails to recover or converge to a satisfactory solution within a specified timeframe. Figure 1 depicts 
the flowchart of the GEP algorithm, illustrating the sequential steps involved in the replication, restructuring, 
and evaluation processes that collectively simulate the dynamics of natural evolution.

Materials and methods
In this paper, three models were developed to predict the JO parameters of Ω2, Ω4 and Ω6 for phosphate glass 
compositions using the GEP method. With this models, these important aspects can be calculated while avoiding 
the utilize of costly oxide materials.

Judd–Ofelt theory
Determining the absorption band strengths in spectroscopic studies of RE systems is usually a difficult task. The 
intensities of the absorption bands are determined in terms of oscillator strength by,

where m presents the electron mass and e is the electron charge, c is the velocity of light, N0 denotes to Avogadro’s 
number, and ε(v) denotes to the molar extinction coefficient which can be calculated by the Beer–Lambert law as,

(1)fexpt =
2303mc2

πe2N0

∫

ε(v)dv

(2)ε(v) =
log

(
I0
I )

10

Cd
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where log(
I0
I )

10  is the absorbance measured at the wavenumber v  (cm−1), C denotes to the concentration of the 
lanthanide ions, and d is the length of sample’s light  path33,34. Based on Judd–Ofelt  theory35,36, the oscillator 
strength for the aJ → bJ ′ transition can be derived by,

where xed and xmd are

The following equations describe the electric and magnetic dipole line strengths:

(3)fcal = Ped + Pmd =
8π2mcv

3h(2J + 1)e2n2
(xedSed + xmdSmd)

(4)xed =
n
(

n2 + 2
)2

9

(5)xmd = n3

(6)Sed(aJ , bJ ′) = e2
∑

t=2,4,6

�t

∣

∣�aJ|Ut |bJ ′�
∣

∣

2

(7)Smd(aJ , bJ ′) =
e2

4m2c2
|�aJ|L+ 2S|bJ ′�|2

Figure 1.  The GEP flowchart.
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It is essential to mention that those magnetic dipole transitions can contribute to the oscillator strength that 
satisfy the selection rules as �S = �L = 0,�J = 0,±1 . By means of a least-square fit to the values of measured 
oscillator strengths, The Judd–Ofelt intensity parameters can be obtained. It is assumed that the reduced matrix 
elements of 

∣

∣�aJ|Ut |bJ ′�
∣

∣

2 are constant from host to  host37. Root mean square error (RMSE) can be used to 
evaluate the accuracy of the fit,

where ε denotes to the number of considered transitions in the calculation.

Experimental setup
Principles during the compilation of databases
In this section, a detailed and comprehensive presentation of the experimental procedures conducted to study the 
optical properties of rare-earth doped phosphate glasses, which will be utilized for constructing the experimental 
database, is provided. This experimental database will be employed for the training of soft computing models 
such as Gene Expression Programming-based models, which will be utilized herein.

Before the presentation of both the experimental methods and corresponding results, it is worth emphasiz-
ing that the majority of researchers paid significant attention and care to the computational method to be used. 
However, they often underestimate the importance of the database used for the development, design, and training 
of forecasting mathematical computational models. The authors of this study strongly believe that the reliability 
of a predictive model, which should be the flagship concern, depends primarily on the reliability and adequacy 
of the database, without ignoring the importance of the computational method and technique to be applied.

Moreover, to avoid any misinterpretation, the term "reliable and adequate" refers to a database in which the 
data are both reliable (true) and statistically sufficient. Statistically sufficient means that the database covers 
smooth distributed all possible values that each of the parameters involved in studied problem can take. This has 
as a result the database to totally reveal the nature of each time studied problem. Furthermore, for experimental 
databases, especially those composed of data from individual published works, special attention must be paid 
to ensure that (i) they are published in reputable scientific journals, (ii) they are conducted in certified research 
laboratories, and (iii) they adhere to all applicable international standards and protocols. Detailed and in-depth 
works on the principles should be followed during the compilation of a database can be found  in38–41.

Finally, the database, in addition to being reliable and adequate, should be appended as supplementary mate-
rials to every accepted publication. Without the database used for training a computational model, it becomes 
impossible to justify the reliability of the presented findings. Moreover, it does not promote research, as it 
forces numerous researchers to compose the entire database without access to previous studies that have been 
conducted.

Glasses preparation
Having the above presented in mind, in this paper, a set of twelve glass series was systematically fabricated by the 
rapid quenching method. The compositions of each glass batch, meticulously detailed below, were formulated 
using analytical-grade materials with purities exceeding 99.9% for  P2O5, MgO, CaO,  ZnSO4,  Er2O3,  Sm2O3, 
 Dy2O3,  TiO2, and Ag chemicals. The information concerning the glass sample compositions and codes that 
relate to them is provided:

• Series PMZxSm: (60 − x)P2O5 − 20MgO −  20ZnSO4 −  xSm2O3, x = 0.5, 1, 1.5, and 2mol%
• Series PMZxDy: (60 − x)P2O5 − 20MgO −  20ZnSO4 −  xDy2O3, x = 0.5, 1, 1.5, and 2mol%
• Series PMZxEr: (60 − x)P2O5 − 20MgO −  20ZnSO4 −  xEr2O3, x = 0.5, 1, 1.5, and 2mol%
• Series PMZSxAg: (59.5 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 0.5Sm2O3 − xAg, x = 0.2, and 0.5mol%
• Series PMZDxAg: (59.5 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 0.5Dy2O3 − xAg, x = 0.2, and 0.5mol%
• Series PMZExAg: (59.5 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 0.5Er2O3 − xAg, x = 0.5, 1.0, and 1.5mol%
• Series PMZSAxTi: (60.0 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 1.0Sm2O3 − 0.5Ag −  xTiO2 with x = 0.1, 0.2, 

0.3 and 0.4mol%
• Series PZDxCa: (69.0 − x)P2O5 −  20ZnSO4 − xCaO − 1.0Dy2O3, x = 10, 20, and 30mol%
• Series PMZExTi: (59 − x)P2O5 − 20MgO −  20ZnSO4 −  1Er2O3 −  xTiO2, x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6mol%
• Series PMZSExTi: (58.0 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 1.0Sm2O3 − 1.0Er2O3 −  xTiO2, x = 0.2, 0.4, 0.6, 

0.8, and 1.0mol%
• Series PMSxZn: (79.0 − x)P2O5 −  xZnSO4 − 20.0MgO − 1.0Sm2O3, x = 10, 20, and 30mol%
• Series PMZETxAg: (58.6 − x)P2O5 − 20.0MgO − 20.0ZnSO4 − 1.0Er2O3 − 0.4TiO2 − xAg, x = 0.01, 0.02, 0.03, 

0.04, and 0.05mol%.

The synthesis process entailed the homogeneous blending of glass constituents, followed by their placement 
in a platinum crucible. Subsequently, the mixture was subjected to melting within a high-temperature furnace 
(approximately 1100 °C) for 1 h and 30 min, with periodic stirring. When the molten material reached the 
appropriate viscosity, it was carefully poured between two stainless steel molds that had been warmed. It was 
then annealed for 3 h at 300 °C. The as-quenched samples underwent a controlled cooling process within the 
furnace to room temperature, aimed at minimizing internal stress. The resulting solid specimens frozen were 

(8)RMSE =

[

∑

(Pcalc − Pexp)
2

(ε − 3)

]
1
2
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then meticulously polished to acquire optically conducive, precisely flat surfaces. Figure 2 visually confirms the 
transparency, absence of bubbles, and homogeneity observed in the studied glass samples.

In addition to the laboratory tests, some data were gathered from academic  literature42–44. Table 1 shows 
some descriptive statistics chemical elements present in the studied compositions. This study extensively reviews 
academic literature concerning the empirical determination of three JO parameters (Ω2, Ω4, Ω6) in  RE3+ doped 
sulfophosphate glasses. The extracted percentage of oxide compositions, derived from stoichiometry, are com-
piled for every glass.

Methods
X-ray diffraction (XRD) analyses were conducted utilizing a Bruker D8 Advance diffractometer, employing 
CuKα radiation (wavelength = 1.54 Å) at 40 kV and 100 mA. The absorption spectra of meticulously polished 
samples within the range of wavelengths for 250–1640 nm were acquired using a Shimadzu UVPC-3101 spec-
trophotometer. The data extracted from the UV–Vis absorption edge facilitated the computation of energies for 
the optical band gap. The refractive index (n) can be expressed with regard to the optical band gap energy ( Eopt ) 
through the following  formula45:

whereas Eopt represents the optical band gap energy and n denotes the refractive index.

Density measurements
Glass density was calculated using the Archimedes method (Precisa Model XT 220 A. Archimedes’), using toluene 
as the immersion fluid because of its non-hygroscopic and non-reactive properties. The glass density ( ρ ) was 
defined with the following formula:

(9)n2 − 1

n2 + 2
= 1−

√

Eopt

20

(10)ρ =
wa

wa − wb
× ρ′

Figure 2.  Some of the samples synthesized in this study.

Table 1.  Minimum, median, maximum, and standard deviation of the percentage of oxide compositions 
obtained over the 60 samples from this study and  literature42–44.

Element Min Max Mean Std. deviation

P2O5 49.00 69.00 58.94 2.76

ZnSO4 15.00 20.00 19.65 1.28

MgO 0.00 30.00 19.16 4.36

Nd2O3 0.00 2.00 0.19 0.51

Ho2O3 0.00 2.50 0.10 0.43

CaO 0.00 30.00 0.83 4.36

Sm2O3 0.00 2.00 0.28 0.48

Dy2O3 0.00 2.00 0.13 0.38

Ag 0.00 1.50 0.10 0.26

Eu2O3 0.00 2.00 0.09 0.37

Er2O3 0.00 2.00 0.36 0.51

TiO2 0.00 1.00 0.14 0.22

�2 1.97 14.40 7.39 3.30

�4 0.38 12.69 3.53 1.91

�6 0.51 6.90 2.32 1.23
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Here, wa  and wb represent the weights of the sample in air and toluene, respectively, and ρ′ (0.8669 g  cm−3) 
is the density of toluene. The molar volume ( Vm ) of the glass, considering its average molecular weight ( Mav ), 
is given by:

where

where x and M represent the molar fraction and molar weight of each glass component (i).

Testing procedure
XRD pattern
X-ray diffraction (XRD) analysis was employed to assess the crystalline characteristics of the investigated glasses. 
Figure 3 illustrates the XRD spectrum for select studied glasses, revealing an absence of discernible diffraction 
peaks. The long-range structural disorder is indicated by the appearance of a broad peak at a lower scattering 
angle.

Optical properties
Figure 4 illustrates the absorption spectra of the prepared glass samples within the wavelength range of 300-
2000nm. The spectra exhibit distinct absorption bands, each ascribed to rare-earth ions transitions from their 
ground state to their excited states. These absorption features play a significant part in elucidating the optical 
characteristics of the glass samples, offering valuable insights into their electronic structure and potential appli-
cations in optical devices.

Development of GEP model
As already mentioned, the key components of a GEP model include the genotype–phenotype mapping, which 
involves encoding the genetic information into a linear string of symbols and then translating it into a func-
tional program. Developing a GEP model for a problem is a complex iterative process which includes precise 
definition, selection of appropriate functions and actions, population generation, and development of genetic 
programs toward optimal solutions. This process requires an understanding of the specific issues of the problem 
as well as technical knowledge of the GEP algorithm. The developed model should be capable of solving the 
defined problem with accurate and reliable solutions that requires high precision and expertise. A GEP model 
can be a powerful tool for solving complicated problems, providing innovative solutions and perspectives that 
are not possible through traditional methods. A GEP model can also be applied to predict JO parameters which 
are employed for analysis the spectroscopic properties of rare-earth ions in solid-state materials. With a deep 
understanding of the JO theory and technical knowledge of GEP, a model can be developed to provide precise 
and reliable solutions for predicting JO parameters.

To develop the GEP models for predicting JO parameters, 60 datasets were prepared as described in the previ-
ous section. To confirm that the results are accurate, existing datasets were randomly separated into two groups 
of train and test datasets. The train datasets are used for function finding via the GEP models and test datasets, 
which have no role in training process, are used to evaluate the accuracy of results. Molar percentage (weight 
% oxide compositions) of all components of the synthesized glasses in the laboratory including 12 components 
(as shown in Table 1) were chosen to be used as the input data. The JO parameters were also selected to be used 
as the output parameters. For each output, an optimal model was developed and a mathematical equation was 
extracted from that model to estimate a JO.

A set of functions and operators that are used to generate genetic programs was selected in order to develop 
the GEP models. These functions are included mathematical and conditional operators. Then a set of initial 
population were generated and improved to reach an optimal population. An evaluation of GeneXproTools, a 
developed code by  Ferreira29, was employed for the simulations. This code previously was successfully used to 
simulate engineering  problems46–48.

The start process of GEP simulation has a random nature which starts with a random creation of the initial 
population’s chromosomes. Consequently, in many cases it does not lead to the desired results and various 
models with different configurations should be tried to obtain the best possible result. In order to find the best 
model, following a trial and error approach, numerous models were implemented. In order to choose the best 
model among the developed models, root mean square error (RMSE) was set as the fitness function. RMSE, as 
a good tool to obtain prediction errors, is the difference between the value predicted by a model and the actual 
value. In each model, the fitness between the developed and the measured parameters were compared. In addi-
tion, mean absolute error (MAE) and correlation of determination  (R2) as the conventional statistical criteria 
of performance measures were obtained for each model. These performance measures can be computed using 
the following equations:

(11)Vm =
Mav

ρ

(12)Mav =
1

100

∑

i

xiMi

(13)RMSE =

√

√

√

√1/n

n
∑

i=1

(ai − pi)
2
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(14)MAE = 1/n

n
∑

i=1

∣

∣ai − pi
∣

∣

Figure 3.  XRD pattern of (a) PMZ0.5Sm, (b) PMZ0.5Dy, (c) PMZ0.5Er, (d) PMZS0.5Ag, (e) PMZD0.5Ag, (f) 
PMZE0.5Ag, (g) PMZSA0.4Ti, (h) PZD10Ca, (i) PMZE0.5Ti, (j) PMZSE0.4Ti, (k) PMS30Zn, (l) PMZET0.05Ag 
glass samples.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15505  | https://doi.org/10.1038/s41598-024-66083-0

www.nature.com/scientificreports/

Obviously, smaller RMSE and MAE along with higher  R2 in a model show more reliable estimation. Where, 
the aim of using these performance measures is to proposed GEP models in lower error with higher correlation. 
To achieve this goal, following the trial and errors for each JO parameter, several models with different number 
of train and test dataset as well as different configuration of GEP algorithm were implemented. Tables 2, 3 and 
4 show the performance of each implemented model for different JO parameters.

Selection the models were conducted based on the evaluation of performance measures. Eventually, models 
No. 14 from Table 2, No. 8 from Table 3 and No. 18 from Table 4 were selected as the optimal models. The con-
figuration settings of the GEP algorithm for the selected models are tabulated in Table 5.
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Figure 4.  Optical absorption spectrum of (a) PMZ0.5Sm, (b) PMZ0.5Dy, (c) PMZ0.5Er, (d) PMZS0.5Ag, (e) 
PMZD0.5Ag, (f) PMZE0.5Ag, (g) PMZSA0.4Ti, (h) PZD10Ca, (i) PMZE0.5Ti, (j) PMZSE0.4Ti, (k) PMS30Zn, 
(l) PMZET0.05Ag glass samples in 300–2000 nm wavelength.
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Results and discussions
As mentioned in the previous section, three models were developed separately to predict JO parameters. The 
setting, performance and results of each model for both train and test datasets are presented in Tables 2, 3 and 4 
for the variables of Ω2, Ω4 and Ω6, respectively. In all steps, the learning ability of the models was specified in the 
training process while the performance of each model that shows its ability to be used in practice was evaluated 
in the testing procedure. Accordingly, model performance evaluation criteria including  R2 and RMSE were used 
to estimate the performance of each model to find the more accurate model.

To develop a model with an acceptable performance the GEP configuration settings, as influential parameters, 
were also changed in each model. From the tables, it can be observed that a change in the GEP parameters does 
not create the same increasing or decreasing trend in the model performance which is due to the nature of the 
GEP modeling process. Due to the large number of input variables considered for JO parameters prediction, 
finding a high-performance model is very complicated. Hence, the models with various head size were evaluated 
as the head size determines the complication of each variable in a developed model.

To predict Ω2, model No. 8 was chosen as the best model among all models of Table 2. In this model, 40 
train and 20 test datasets, 40 chromosomes with 18 head size and 6 genes were employed. With an  R2 of 0.96 
for train and 0.95 for test datasets, this model has performed better among all models. It should be mentioned 
that  R2 value alone is not enough to evaluate the accuracy of a model. Therefore, RMSE as the error evaluation 
index was also used. RMSE values 0.6549 and 0.6849 were respectively obtained for train and test datasets of the 
selected model. Figure 5 shows an illustrative comparison between predicted Ω2 values by the proposed model 
and the experimental Ω2 measures for train and test datasets. According to these figures, predicted Ω2 values 
are in good agreement with the experimental Ω2 measured values which indicate the capability of the proposed 
model to predict JO parameters.

An equation can also be extracted from this model to be used for prediction of Ω2. This equation can be 
presented in the form of a mathematical equation or a computer program code. Considering that 14 variables 
were used as the input parameters, a complex equation is derived to predict the value of Ω2 from the selected 
model. Therefore, this equation is presented in the form of a Matlab code, which makes its use very simple. This 
code can be found in Appendix A1.

Similarly, models No. 8 and No. 18 were respectively selected to predict Ω4 and Ω6 from Tables 3 and 4. Fig-
ures 6 presents the experimental vs predicted values for the Ω4 parameter while Fig. 7 presents the experimental 
vs predicted values for the Ω6 parameter. The strong correlation between predicted and measured values of Ω4 
and Ω6 (i.e.  R2 = 0.97 for train and  R2 = 0.93 for test datasets of Ω4 and  R2 = 0.97 for train and  R2 = 0.95 for test 

Table 2.  GEP models implemented for formulation of Ω2.

GEP parameters Results

No.
No. of test 
datasets Linking function

No. of 
chromosomes Head size Genes’ number

RMSE for train 
datasets

RMSE for test 
datasets

R2 for train 
datasets

R2 for test 
datasets

1 16  + 12 10 3 1.6537 1.5704 0.7334 0.7510

2 16  × 12 10 3 1.0423 7.2033 0.8943 0.4803

3 17  + 16 12 5 1.2837 2.9813 0.8495 0.5826

4 17  × 16 12 5 0.6100 2.7332 0.9634 0.3943

5 18  + 20 14 6 1.0736 1.6420 0.8987 0.7538

6 18  + 20 14 7 0.9494 2.3725 0.9114 0.6582

7 18  × 20 14 7 1.6790 2.0624 0.7379 0.6308

8 19  + 26 16 4 1.1151 2.2205 0.8835 0.5639

9 19  + 26 16 6 1.2882 1.7167 0.8369 0.7425

10 19  + 32 16 8 1.0141 4.0280 0.9022 0.5386

11 19  × 26 16 6 0.9926 3.2393 0.9234 0.4492

12 19  × 32 16 8 1.3855 1.7350 0.8096 0.7374

13 20  + 36 18 6 0.8760 0.9665 0.9152 0.9078

14 20  + 40 18 6 0.6549 0.6849 0.9618 0.9507

15 20  × 36 18 6 0.8287 1.1516 0.9256 0.9076

16 20  × 40 18 6 1.0576 0.7232 0.9093 0.9478

17 21  + 44 20 8 1.0122 0.8581 0.9009 0.9269

18 21  + 48 22 8 0.7930 0.8737 0.9312 0.9375

19 21  × 48 22 8 0.9149 1.2908 0.9468 0.8372

20 22  + 40 18 6 0.6948 0.7106 0.9479 0.9499

21 22  + 44 20 8 0.8947 1.7590 0.9107 0.7040

22 22  × 44 20 8 1.0840 1.6828 0.8133 0.6727

23 23  + 40 18 6 1.1041 1.8122 0.8633 0.6846

24 23  × 40 18 6 1.4955 1.9729 0.7415 0.6232

25 24  + 40 18 6 1.9677 2.1566 0.6434 0.5638
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datasets of Ω6) besides the acceptable errors (i.e. RMSE = 0.2987 for train and RMSE = 0.3149 for test datasets 
of Ω4 and RMSE = 0.2356 for train and RMSE = 0.2042 for test datasets of Ω6) indicates the good generalization 
performance of the proposed models. Two Matlab codes were also extracted from the proposed models which 
can be easily used to predict JO Ω4 and Ω6 parameters. These codes can be seen in Appendix A2 and A3. The 
possibility of using the extracted codes from the proposed GEP models which can be quickly and easily done with 
acceptable accuracy, makes them a useful tool for predicting JO parameters. However, it is deserved to applied 
the proposed models as preliminary estimates and cautiously be used for the final stages.

Limitations and future perspectives
In this section, the limitations and immediate research prospects of the authors are presented based on the 
results of the present study, which have been discussed above, and the main conclusions will be presented 
below. It is worth writing that any forecasting soft computing mathematical model is valid for parameter values 
(input parameters) that fall within the minimum and maximum values that each parameter takes based on the 
experimental database used for its design, development, and training. Thus, the proposed Gene Expression 
Programming optimal models, which have been developed and presented herein, are valid for values between 
the minimum and maximum for each input parameter as presented in Table 1.

A primary priority among the authors’ future research objectives is to update the database with a larger 
number of datasets covering statistically uniformly all possible values of the input parameters, thus making the 
estimation of the optical properties of rare-earth doped phosphate glasses more reliable revealing their compli-
cated and strongly nonlinear nature.

Conclusion
The JO theory stands as a pivotal framework in rare-earth spectroscopy, holding implications across various 
scientific disciplines. Its role in the spectroscopic characterization of materials places it at the core of material sci-
ence and chemistry. However, accurate estimation of the three principal parameters, Ω2, Ω4, and Ω6, necessitates 
extensive experimental work. Moreover, the mathematical intricacies involved render such inferences challenging 
for non-experts and particularly inaccessible for experimentalists with limited knowledge of quantum mechanics. 
These obstacles to optical material innovation serve as a deterrent. Statistical and chemometric methods were 
used in an attempt to determine the illusive parameters without the usual difficult experimental and theoretical 
processes. The objective was to establish a relationship between accessible information regarding the materials 
of interest and the related JO parameters, generating subsequent optical characterizations. Remarkably, by solely 

Table 3.  GEP models implemented for formulation of Ω4.

GEP parameters Results

No.
No. of test 
datasets Linking function

No. of 
chromosomes Head size Genes’ number

RMSE for train 
datasets

RMSE for test 
datasets

R2 for train 
datasets

R2 for test 
datasets

1 19  + 25 12 3 0.7013 0.5976 0.8368 0.7524

2 19  + 30 12 3 0.4235 0.5940 0.9422 0.7829

3 19  × 30 12 3 0.4214 0.6268 0.9409 0.7384

4 20  + 35 13 5 0.3754 0.4733 0.9551 0.8799

5 20  × 35 13 5 0.4765 0.4854 0.9311 0.7762

6 20  + 40 18 6 0.4127 0.3867 0.9400 0.9106

7 20  × 40 18 6 0.4424 0.3332 0.9410 0.8974

8 21  + 40 15 8 0.2987 0.3149 0.9722 0.9274

9 21  × 40 18 8 0.4016 0.7037 0.9029 0.8937

10 21  + 40 16 8 0.2594 0.4838 0.9466 0.8854

11 21  × 40 16 8 0.3291 0.5355 0.9363 0.9121

12 22  + 41 15 8 0.3785 0.5857 0.9098 0.7240

13 22  + 42 15 8 0.3390 0.5075 0.9380 0.8097

14 22  + 43 15 9 0.3328 0.5275 0.9324 0.7886

15 22  × 43 15 9 0.3780 0.4736 0.9028 0.8875

16 23  + 44 15 8 0.3687 0.4194 0.8760 0.8888

17 23  × 44 15 8 0.3081 0.5025 0.9007 0.8217

18 23  + 45 16 9 0.4271 0.3242 0.8462 0.8869

19 23  × 45 16 9 0.3756 0.4332 0.8958 0.8129

20 24  + 40 18 8 0.4144 0.3766 0.8710 0.8160

21 24  × 40 18 8 0.3288 0.5072 0.9079 0.7888

22 24  + 40 20 10 0.7568 1.0106 0.6791 0.7755

23 24  × 40 20 10 0.3622 0.5174 0.8937 0.8546

24 25  + 40 22 10 0.3697 0.5136 0.9172 0.7028

25 25  × 40 22 10 0.3509 0.3115 0.9114 0.8837



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15505  | https://doi.org/10.1038/s41598-024-66083-0

www.nature.com/scientificreports/

Table 4.  GEP models implemented for formulation of Ω6.

GEP parameters Results

No.
No. of test 
datasets Linking function

No. of 
chromosomes Head size Genes’ number

RMSE for train 
datasets

RMSE for test 
datasets

R2 for train 
datasets

R2 for test 
datasets

1 17  + 12 10 6 0.7214 0.7639 0.7316 0.6161

2 17  × 12 10 6 0.7441 0.7421 0.7648 0.6434

3 18  + 15 12 8 0.6841 0.6517 0.7666 0.7074

4 18  × 15 12 8 0.5303 0.4811 0.8629 0.7512

5 19  + 20 14 8 0.8995 0.7311 0.6500 0.7092

6 19  × 20 14 8 0.7740 0.6840 0.7486 0.6618

7 20  + 20 18 6 0.5048 0.9539 0.8707 0.8019

8 20  + 30 14 8 0.5362 0.7348 0.7746 0.6956

9 20  × 40 18 6 0.4899 0.4570 0.8402 0.8592

10 21  + 35 14 6 0.4706 0.4207 0.8241 0.8270

11 21  + 40 15 8 0.4815 0.8040 0.8308 0.8258

12 22  + 40 16 8 0.4936 0.4143 0.8684 0.8605

13 22  × 40 16 8 0.4466 0.5530 0.8903 0.8600

14 23  + 45 18 6 0.4323 0.4032 0.8915 0.8672

15 23  + 45 20 8 0.4259 0.5834 0.8375 0.8335

16 24  + 45 22 10 0.3558 0.3287 0.9174 0.8979

17 25  × 45 22 12 0.3158 0.5763 0.9208 0.9158

18 19  + 30 10 12 0.2356 0.2042 0.9686 0.9473

19 19  + 35 10 12 0.2124 0.3387 0.9618 0.9080

20 19  × 40 10 12 0.4145 0.3464 0.8674 0.9139

21 20  + 40 12 12 0.3221 0.6439 0.9097 0.9119

22 20  + 45 10 12 0.4234 0.3975 0.8918 0.9079

23 20  × 45 12 12 0.4262 0.4905 0.8786 0.8983

24 21  + 30 12 14 0.6265 0.7527 0.8515 0.8249

25 21  + 30 14 14 0.7688 0.3642 0.8756 0.8844

Table 5.  Configuration settings for GEP algorithm.

Parameter Ω2 Ω4 Ω6

General

No. of chromosomes 40 40 30

head size 18 15 10

No. of genes 6 8 12

linking function Addition Addition Addition

function set  + , −, *, /, Exp, Ln, Inv,  x2, 3Rt, Min 2, Ave 
2, Max 2, Atan, Tanh, NOT

 + , −, *, /, Pow, Sqrt, Exp, Pow10, Ln, Log, 
Inv,  x2,  x3,  x4,  x5, 3Rt, 4Rt, 5Rt, Min 2, Ave 
2, Max 2, Atan, Tanh, NOT

 + , −, *, /, Pow, Sqrt, Exp, Pow10, Ln, Log, 
Abs, Inv,  x2,  x3,  x4, 3Rt, 4Rt, Min 2, Max, 
2Ave 2, Ave 3

Fitness function RMSE RMSE RMSE

Genetic operators

Mutation rate 0.00138 0.00138 0.00138

IS transposition rate 0.00546 0.00546 0.00546

RIS transposition rate 0.00546 0.00546 0.00546

Inversion rate 0.00546 0.00546 0.00546

Gene recombination 0.00277 0.00277 0.00277

Gene transposition 0.00277 0.00277 0.00277

Numerical constants

Constants per gene 10 10 10

Data type Floating-point Floating-point Floating-point

Lower bound − 10 −10 −10

Upper bound  + 10  + 10  + 10
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Figure 5.  Comparison between predicted Ω2 values by the proposed model and the experimental measured Ω2 
for train (right) and test (left) datasets.

Figure 6.  Comparison between predicted Ω4 values by the proposed model and the experimental measured Ω4 
for train (right) and test (left) datasets.
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considering the bulk composition of a limited number of sulfophosphate glasses doped with  RE3+ (from literature 
and experimental work), it successfully estimated the parameters with a proper margin of error. This estimation, 
previously only possible through complicated experimental and analytical procedures, represents a significant 
achievement. Interestingly, predicted Ω2 values are consistent with experimental findings of Ω2 values, indicat-
ing the proposed model can accurately predict JO parameters. The strong correlation between predicted and 
measured values of Ω4 and Ω6 (i.e.  R2 = 0.97 for train and  R2 = 0.93 for test datasets of Ω4 and  R2 = 0.97 for train 
and  R2 = 0.95 for test datasets of Ω6) besides the acceptable errors (i.e. RMSE = 0.2987 for train and RMSE = 0.3149 
for test datasets of Ω4 and RMSE = 0.2356 for train and RMSE = 0.2042 for test datasets of Ω6) specifies the good 
generalization performance of this models.

In conclusion, this study not only addresses a pressing challenge in materials science but also demonstrates 
the transformative potential of advanced computational techniques like GEP. By bridging the gap between 
theory and experiment, this research paves the way for accelerated innovation in the field of optical materials, 
showcasing the collaborative efforts of researchers from diverse scientific backgrounds and serving as a valuable 
educational resource.

Data availability
Data will be made available upon request from the corresponding author.

Figure 7.  Comparison between predicted Ω6 values by the proposed model and the experimental measured Ω6 
for train (right) and test (left) datasets.
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Appendix A1: Matlab code for calculating JO parameterΩ2

function result = gepModel(d)

% the vector d(12) consist of the values of P2O5, ZnSO4, MgO, Nd2O3, Ho2O3, CaO, Sm2O3, Dy2O3, Ag, Eu2O3, 

Er2O3, TiO2 respectively

G1C2 = -1.77412954263278; G1C1 = -3.38419751579333; G2C7 = 1.4353125077325; G2C2 = -4.6173648062842;

G3C3 = -4.82848282509842; G3C0 = -1.98169194616535; G3C4 = 6.02771080660421; G4C7 = 8.60961579111227;

G4C8 = -13.7928488029832; G4C9 = 7.20477919858394; G4C0 = 7.87007030707843; G5C2 = -8.09015772525077;

G6C8 = -8.99533066805017; G6C5 = 5.41090426343577;

y = 0.0;

y = gep3Rt(gep3Rt(tanh((d(7)+((gep3Rt(d(4))-((max(d(10),d(5))+((d(6)+G1C2)/2.0))-((d(9)+G1C1)*d(4))))-

(((d(11)-d(9))^2)^2))))));

y = y + reallog(min(d(2),((((d(10)-((((G2C2^2)*gep3Rt(d(4)))+G2C7)/2.0))+((d(3)+(((d(3)-

G2C2)*G2C2)*(d(9)^2)))/2.0))/2.0)^2)));

y = y + tanh(gep3Rt(atan(min(d(8),(1.0-gep3Rt((((((d(11)+G3C3)+((d(4)+d(2))/2.0))/2.0)-

(((G3C0*d(1))+(G3C4*d(3)))/2.0))*(1.0-(((G3C4+d(8))+d(7))/2.0)))))))));

y = y + (((((1.0/(((d(12)+G4C0)-(d(1)*d(4)))))*(((G4C7+d(1))/2.0)+(G4C8^2)))/(((d(2)+(G4C9*d(7)))/2.0)-

(d(4)+exp(d(4)))))+G4C7)/2.0);

y = y + 

((d(9)+((max(((gep3Rt((gep3Rt(d(12))*gep3Rt(d(2))))+d(5))/2.0),(((gep3Rt(gep3Rt(d(7)))+max(d(9),d(11)))/2.0) 2̂

))-d(10))*G5C2))/2.0);

y = y + atan(((((1.0/(((G6C8+G6C5)*G6C8)))-exp(d(12)))-(((1.0-d(3))*(1.0-d(10)))*(((d(6)+d(9))+(1.0-

d(7)))/2.0)))*exp(d(3))));

result = y;

function result = gep3Rt(x)

if (x < 0.0),

result = -((-x)^(1.0/3.0));

else

result = x^(1.0/3.0);

end

Appendix A2: Matlab code for calculating JO parameter Ω4
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Function result = gepModel(d)

% the vector d(12) consist of the values of  P2O5, ZnSO4, MgO, Nd2O3, Ho2O3, CaO, Sm2O3, Dy2O3, Ag, Eu2O3, 

Er2O3, TiO2 respectively

G1C7 = -0.662997803598436; G1C6 = 7.06639854087781; G2C0 = -3.09147180224564; G2C5 = 5.31987282047;

G3C9 = -5.49969820245979; G3C4 = -10.5504633455729; G3C7 = 2.26476302764977; G3C5 = 0.377166945622623;

G4C0 = 3.06604615314188; G5C3 = 9.64086864740253; G5C8 = -7.57823832819605; G6C6 = -4.24181260580509;

G6C9 = 9.28220465712455;

y = 0.0;

y = min(((((G1C7+G1C6)/2.0)+gep3Rt(((d(4)-gep3Rt((gep5Rt(d(12))+(d(9)+d(5)))))^5)))/2.0),(10^d(2)));

y = y + (min((((G2C0+d(9))*d(7))^2),reallog(realsqrt((d(1)+d(1)))))-((((d(7)/G2C5)+d(7))+d(5))*d(11)));

y = y + atan((atan(d(6))+(10^((realpow((d(7)+d(9)),(G3C7*d(7)))-

atan(gep3Rt(G3C5)))*(G3C9*((G3C4+d(2))/2.0))))));

y = y + gep3Rt((d(2)*gep5Rt((d(3)*(((((G4C0-d(11))-max(d(9),d(8)))-(max(d(7),d(8))+d(7)))^2)+d(10))))));

y = y + tanh((((G5C3*(d(11)^2))+((tanh((d(7)^5))^2)+((G5C8^2)-d(1))))*d(9)));

y = y + (G6C6+((d(4)*((G6C9*max(d(9),d(10)))+((d(12)*d(4))^4)))*(realpow(realpow(G6C6,d(6)),(1.0/4.0)))));

y = y + (gep3Rt(d(2))-atan(((gep3Rt((((d(5)-d(8))+(d(10)*d(1)))+((tanh(d(6))+(d(11)^2))/2.0)))^2)+d(4))));

y = y + d(4);

result = y;

function result = gep3Rt(x)

if (x < 0.0),

result = -((-x)^(1.0/3.0));

else

result = x^(1.0/3.0);

end

function result = gep5Rt(x)

if (x < 0.0),

result = -((-x)^(1.0/5.0));

else

result = x^(1.0/5.0);

end

Appendix A3: Matlab code for calculating JO parameter Ω6
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function result = gepModel(d)

% the vector d(12) consist of the values of  P2O5, ZnSO4, MgO, Nd2O3, Ho2O3, CaO, Sm2O3, Dy2O3, Ag, Eu2O3, 

Er2O3, TiO2 respectively

G1C6 = -5.53868903511444; G2C3 = -7.99500288854945; G2C7 = 11.4755743430891; G2C4 = 5.97768829572703;

G2C9 = -2.7389417647044; G4C8 = 2.86618204294874; G4C6 = 8.94192327646718e-02; G4C5 = -6.29104033285165;

G5C2 = 0.548130516983551; G7C8 = -1.61717581713309; G8C5 = -5.4806220714828; G8C2 = 12.4174656062166;

G8C7 = -2.98227269142042; G8C0 = 4.11601761061137; G9C6 = 5.90729328208225; G9C2 = 3.75460982085635;

G11C1 = -3.38654929618237; G11C8 = 0.190291658242621; G11C7 = -1.30515929982154; G11C4 = -5.58941414639729;

G12C1 = -2.30452166471337;

y = 0.0;

y = (10^((G1C6+exp(((d(8)-d(4))-((d(1)*d(6))+d(7)))))/2.0));

y = y + exp(((((G2C3+((G2C4*d(4))-(d(7)+G2C9)))/2.0)+((d(7)-G2C7)*(d(12)*G2C7)))/2.0));

y = y + (d(5)*d(2));

y = y + min(G4C8,(((G4C8+(10^d(12)))+((((G4C6+d(7)+d(4))/3.0)+((G4C5+d(3))/2.0))/2.0))/2.0));

y = y + (((((d(4)-d(7))^2)*((d(4)+d(4)+G5C2)/3.0))+(d(9)+d(7)))*d(9));

y = y + realsqrt(d(2));

y = y + (realpow(((d(4)*((10^d(12))+(1.0/(G7C8))))*(1.0/(exp((d(10)+d(11)))))),(1.0/4.0)));

y = y + min((((d(5)+((G8C7+G8C0)/2.0))/2.0)-realsqrt((d(7)*G8C0))),((G8C5+(d(7)*G8C2))/2.0));

y = y + (((((G9C6+d(3))/2.0)*d(5))+d(12))*(gep3Rt((d(11)-G9C2))+(d(7)+d(11))));

y = y + (realpow(d(12),(max(d(7),d(8))+(d(7)*d(11))))*(((reallog(d(1))/reallog(10))*d(9))-

(realpow(d(11),(1.0/4.0)))));

y = y + (((((G11C8+G11C8)*G11C1)+(((G11C7+d(9))+(d(9)*G11C4))/2.0)+(((d(10)^3)+d(7))/2.0))/3.0)^3);

y = y + G12C1;

result = y;

function result = gep3Rt(x)

if (x < 0.0),

result = -((-x)^(1.0/3.0));

else

result = x^(1.0/3.0);

end

Received: 10 April 2024; Accepted: 26 June 2024
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