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A B S T R A C T   

Cobalt-free refractory high-entropy alloys (RHEAs) are strong contenders for structural materials in nuclear 
reactors because they do not exhibit cobalt activity under irradiation. The mechanical properties and thermal 
stability of RHEAs are primarily attributed to the solid solution phase, which is essentially the body-centered 
cubic (BCC) phase. The BCC phase formation rules thus became the basic criterion in the compositional 
design of RHEAs. In this paper, the BCC phase formation rules in cobalt-free RHEAs were determined via the 
calculation of six semiempirical parameters, namely, the entropy of mixing, enthalpy of mixing, atomic size 
difference, Ω-parameter, d-orbital energy level and valance electron concentration. The mixing enthalpy and 
atomic size differences are more effective than other semiempirical parameters for predicting BCC phase stability 
in cobalt-free RHEAs. The presence of aluminum is found to cause a notable alteration in the range of phase 
stability in cobalt-free RHEAs.   

Introduction 

Since the concept of equiatomic or near-equiatomic multicomponent 
alloys comprising four or more metallic elements was proposed, high- 
entropy alloys (HEAs) have attracted significant interest [1–3]. 
Compared to those of conventional metallic materials such as steels 
[4,5], copper alloys [6,7], tungsten alloys [8] and niobium alloys [9], 
the superior comprehensive mechanical properties of HEAs [10–13], 
especially their stable properties under extreme environments [14–18], 
have made them one of the most promising structural materials for next- 
generation nuclear energy systems [14]. For instance, the disordered 
solid solution phase still remained in a CrFeCoNi alloy under 1250 keV 
electron irradiation for up to 1 dpa at 673 K, and no phase separation or 
decomposition was detected [19]. It was reported that the AlxCoCrFeNi 
alloy system exhibited significantly lower irradiation-induced volume 
swelling than did conventional materials under 3 MeV Au-ion irradia
tion [20]. However, cobalt activation due to neutron irradiation makes 
Co-containing HEAs unsuitable for nuclear engineering applications 
[21,22]. Refractory HEAs (RHEAs) are a type of HEA that contains 

multiple transition elements with high melting points, such as Nb, Mo, 
Ta, W, Hb, V, Zr and Ti, as their main components can meet high- 
temperature stability and Co-free requirements [23–25]. 

The mechanical properties of RHEAs can be optimized by adjusting 
the phase components and microstructures through the selection of alloy 
systems and changing alloying elements [26]. However, the final phase 
structures can often be detected only after manufacturing due to the 
complex composition of RHEAs, which undoubtedly adds to the signif
icant cost of the study. During the last decade, several semiempirical 
phase formation rules, such as the entropy of mixing (ΔSmix), enthalpy of 
mixing (ΔHmix), atomic size difference (δ) and Ω parameter, have been 
proposed to improve HEA design [27,28]. It is easy to obtain a solid 
solution phase in HEAs when 12 ≤ ΔSmix ≤ 17.5 J⋅K− 1⋅mol− 1, − 15 ≤
ΔHmix ≤ 5 kJ⋅mol− 1, δ ≤ 6.6 and Ω ≥ 1.1 [27,28]. With the development 
of related research, new parameters related to valence electrons, such as 
the d-orbital energy level (Md) and valence electron concentration 
(VEC), have been proposed to further improve the phase formation rules 
[29,30]. These six parameters are effective at predicting the phase for
mation of some HEAs. Nevertheless, the feasibility of phase prediction 
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for RHEAs still needs further study. 
In this work, multicomponent systems of Co-free RHEAs reported in 

the literature were collected, and the corresponding parameters, 
including ΔSmix, ΔHmix, Ω, δ, Md and VEC, were calculated. Solid solution 
phase formation rules for Co-free RHEAs were proposed based on 
composition design theory, which can be used for nuclear engineering 
applications. The effect of Al in Co-free RHEAs on BCC phase formation 
was studied. 

Methods 

Data collection 

The various multicomponent systems of Co-free RHEAs were sum
marized by collecting alloy systems in previous reports [31–103]. The 
compositions of Co-free RHEAs and the calculated values of the six pa
rameters ΔSmix, ΔHmix, Ω, δ, Md and VEC are listed in Table. A1. The 
phase components of Co-free RHEAs were characterized under as-cast/ 
homogenized/recrystallized conditions. 

Composition design theory 

The four semiempirical parameters ΔSmix, ΔHmix, Ω, and δ are defined 
by the following equations [27,28,104]: 

ΔSmix = − R
∑n

i=1
CilnCi (1)  

where Ci is the atomic fraction of the i-th element, R = 8.314 JK− 1⋅mol− 1 

is the gas constant, and 

ΔHmix =
∑n

i=1, i∕=j

ΩijCiCj (2)  

where the i-th element is distinct from the j-th element; Ω = 4ΔHmix
AB is 

the enthalpy of mixing between the interacting elements i and j; and 

δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1, i∕=j

Ci(1 − ri/r)2

√
√
√
√ , (3)  

where ri is the atomic radius of the i th element and the average atomic 
radius r is defined as r =

∑n
i=1ciri. Ω is a parameter that takes into ac

count the combined effects of ΔSmix and ΔHmix and is expressed as 
follows: 

Ω =
TmΔSmix

|ΔHmix|
, (4)  

where Tm is the melting temperature of the multicomponent alloy. Two 
other d-electron-related parameters, Md and VEC, were also adopted, 
which were proposed as [29,30,105]: 

Md =
∑n

i=1
Ci(Md)i, (5)  

VEC =
∑n

i=1
Ci(VEC)i, (6)  

where (Md)i and (VEC)i are the d-orbital energy level and VEC of the i-th 
element, respectively. It is important to note that the alloying elements 
M exhibit different Md values when considering the structures of various 
solvent elements X due to the influence of electronegativity and the 
atomic radius of both solute and solvent elements [106,107]. Therefore, 
the Md values of the alloying elements in FCC Ni, BCC Fe and BCC Cr are 
all considered to verify the feasibility of each structure in Co-free 
RHEAs; these values are listed in Table 1 [108,109]. 

Results 

The individual parameter values of phases in RHEAs 

The effects of parameters Md in FCC Ni, Md in BCC Fe, Md in BCC Cr, 
VEC, ΔSmix, ΔHmix, Ω and δ on the stability of various phases in Co-free 
RHEAs are clearly plotted in Fig. 1. All four phases, bulk metallic glass 
(BMG), intermetallic (IM), BCC and intermetallic mixed phase (BCC +
IM) and the BCC phase, have different Md values for FCC Ni, BCC Fe and 
BCC Cr, respectively. Md in FCC Ni has the lowest values, and the 
highest values are in BCC Fe; Md in BCC Cr is between the former two. It 
can be clearly seen from Fig. 1a, b and c that Md for BMG and IM are 
relatively low, and the BCC + IM phase and BCC phase are distributed in 
wide ranges that almost cover the ranges of BMG and IM. Conversely, 
the VECs for BMG and IM had relatively greater values than did those for 
the BCC + IM phase and BCC phase. BMGs and IMs are prone to form 
when the VEC is greater than 5.67. However, describing the difference 
between these four phases in terms of ΔSmix is difficult because their 
ranges overlap. Like Md, ΔHmix is relatively high for the BCC phase and 
low for the BMG and IM phases. A clear phase boundary of − 18.78 
kJ⋅mol− 1 in terms of ΔHmix between the BMG and BCC phases can be 
observed in Fig. 1f. As the Ω parameter is a function of ΔSmix and ΔHmix, 
BMG and IM are more stable when Ω is lower than 1.65. It is noteworthy 
that the distribution range of the BCC phase is significantly different 
from that of the BMG and IM phases in terms of δ. Only the BCC + IM 
phase forms when δ is in the range of 7.63%–––9.25%, and the BMG and 
IM phases form when δ is greater than 9.25. As shown in Fig. 1, ΔHmix 
and δ have the most significant effects on the formation of the solid 
solution phase and BMG. However, the distribution ranges of the BCC +
IM phase and BCC phase of the BMG and IM phases always overlap and 
are difficult to distinguish. Further research is required for BMG and IM 
due to a lack of data. 

Effect of various parameters on BCC-structured RHEAs 

The excellent mechanical properties of RHEAs are mainly attributed 
to the solid solution phase, and the solid solution phase formation rules 
are critical for phase prediction in RHEAs [24,110]. Therefore, in the 
following sections, only the BCC + IM phase and BCC phase are dis
cussed. It is noted that in Table. A1, a large number of RHEAs contain the 
nontransition metal Al. Al, as an extra element, can significantly impact 
the properties of RHEAs and is often used to adjust phase components 
and structure [111,112]. Therefore, there are two groups of Co-free 
RHEAs based on whether they contain Al. 

The effects of the individual parameters on the solid solution phase 
stability in the two groups of Co-RHEAs are shown in Fig. 2. As shown in 

Table 1 
Mdvalues of the alloying elements in FCC Ni, BCC Fe and BCC Cr.  

Alloying 
element 

Md value in FCC 
Ni 

Md value in BCC 
Fe 

Md value in BCC Cr 

Ti  2.271  2.497  2.87 
V  1.543  1.61  1.998 
Cr  1.142  1.059  1.301 
Mn  0.957  0.854  0.752 
Fe  0.858  0.825  0.694 
Co  0.777  0.755  0.658 
Ni  0.717  0.661  0.213 
Cu  0.615  0.637  − 0.346 
Zr  2.944  3.074  3.359 
Nb  2.117  2.335  2.662 
Mo  1.55  1.663  1.968 
Hf  3.02  3.159  4.518 
Ta  2.224  2.486  3.605 
W  1.655  1.836  2.768 
Al  1.9  1.034  1.034  
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Fig. 2a, b and c, Md in three different structures are unable to distinguish 
between the BCC phase and mixed phase of two groups of Co-free 
RHEAs. The distribution ranges of the mixed phase and BCC phase 
overlap with each other for both VEC and ΔSmix, irrespective of the 
presence of Al. In terms of ΔHmix, as illustrated in Fig. 2f, Al-containing 
RHEAs generally have more negative values than Al-free RHEAs, and the 
mixed phase of Al-containing RHEAs has even more negative values 
than the BCC phase. Notably, these two alloy systems contain the FCC 
structural element Ni, and the ΔHmix of RHEAs can reach a very negative 
value with the addition of Ni, thus forming a mixed phase. As |ΔHmix| 
increases and Ω decreases, the inverse relationship between Ω and ΔHmix 
is well established, as shown in Fig. 2g. Different distributions of δ can be 
found between the mixed phase and the BCC phase within the two 
groups of RHEAs. The mixed phase had higher δ values than did the BCC 
phase. However, it is still impossible to describe the solid solution for
mation rules for Co-free RHEAs when only one parameter is considered, 
regardless of the presence of Al. 

Combined effect of parameters on BCC-structured RHEAs 

Effect of the atomic size difference on the phase stability of Co-free RHEAs 
Numerous studies have reported that δ plays an important role in the 

phase prediction of HEAs [28,113,114]. It is important to note that δ 
cannot be utilized as a single parameter for predicting phase formation. 
Therefore, the distributions of δ superimposed on the valence electron- 
related parameters are plotted in Fig. 3. Interestingly, the BCC phase 
of the two Co-free RHEAs is distributed in the upper-right and lower-left 
regions of the Md and δ plots, as shown in Fig. 3a, b and c. Compared 
with the other two Md plots, the BCC + IM phase in the Al-containing 
RHEAs is distributed in a region similar to that of the Al-free RHEAs 
when Md is calculated based on FCC Ni, and the clear solid solution 
formation rules cannot be defined from the random distribution. For Md 
in BCC Fe and Cr, the BCC + IM phase of the Al-containing RHEAs is 
distributed between these two regions, while the majority of the BCC +
IM phase of the Al-free RHEAs is located in the region with both high Md 
and high δ values. The Co-free RHEAs located in the upper-right region 

Fig. 1. The effect of Md for alloying elements in FCC Ni (a), BCC Fe (b) and BCC Cr (c), VEC (d), ΔSmix (e), ΔHmix (f), Ω (g) and δ (h) on phase stability in RHEAs.  
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mainly consist of a combination of 3d, 4d and 5d transition metals, 
resulting in high δ values. With the additions of high-Md-value elements, 
Hf and Zr, the Co-free RHEAs show high Md values. However, if the δ 
values of Al-free and Al-containing RHEAs exceed 7.63 % and 6.28 %, 
respectively, IM phases will form in Co-free RHEAs. The VEC in Fig. 3d 
displays a comparable distribution of the BCC phase in Al-free RHEAs, 
whereas a distinct two-part distribution is not found in Al-containing 
RHEAs with a BCC phase. Likewise, if the Co-free RHEAs contain low 
VEC elements such as Hf and Zr, they are located in the lower-right re
gion. With the addition of the nontransition metal Al, the VEC values of 
Co-free RHEAs significantly decrease since Al has a lower VEC than 
transition metals. 

The effects of δ superimposed on ΔSmix, ΔHmix and Ω are shown in 
Fig. 4. Like for the effect of a single ΔSmix, the ΔSmix − δ plot still displays 
a random distribution of phase stability. The mixed and BCC phases are 
divided into four parts based on whether the Co-free RHEAs contained 
Al when ΔHmix and δ are combined. Co-free RHEAs without Al are prone 
to form a solid solution phase when − 6.50 ≤ ΔHmix ≤ 2.72 kJ⋅mol− 1 and 
δ ≤ 7.63 %, and the range is changed to − 16.84 ≤ ΔHmix ≤ -3.99 

kJ⋅mol− 1 and δ ≤ 6.28 % with the addition of Al. Although there is some 
overlap between these four regions, it is possible to describe simple rules 
for the formation of solid solution phases in Co-free RHEAs. The two 
mixed-phase multicomponent alloys without Al located in the Al- 
containing RHEAs region result from the addition of the FCC struc
tural element Ni, as mentioned earlier. The solid solution phase for
mation rules for Ω can also be described as Ω ≥ 5.40 and 1.19 ≤ Ω ≤
8.81 for Al-free and Al-containing RHEAs, respectively. 

Effect of valence electron-related parameters on the phase stability of Co-free 
RHEAs 

The parameters Md and VEC, which are both related to valence 
electrons, may be correlated in predicting HEA phases. Fig. 5 is gener
ated by superimposing VEC and Md on three structures. The mixed phase 
in Al-free RHEAs exhibits a greater Md in FCC Ni than in the solid so
lution phase in Al-free RHEAs and the phases in Al-containing RHEAs. 
The difference between the solid solution phase in Al-free RHEAs and 
the phases in Al-containing RHEAs is difficult to describe. The Md in FCC 
Ni, BCC Fe and BCC Cr exhibit a convergent negative correlation with 

Fig. 2. Effect of Md for FCC Ni (a), BCC Fe (b), BCC Cr (c), VEC (d), ΔSmix (e), ΔHmix (f), Ω (g) and δ (h) on the phase stability of BCC-structured RHEAs.  
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VEC. In addition, Al-containing and Al-free RHEAs are distributed in 
parallel in the Md − VEC plots. It is indicated that Al-containing RHEAs 
have lower Md in BCC Fe and BCC Cr with comparable VEC values. The 
linear correlation of the phase distribution becomes increasingly 
divergent as FCC Ni changes to BCC Cr. Nevertheless, the mixed phase 
and BCC phase are difficult to distinguish in both the Al-free and Al- 
containing RHEAs from Md (in the BCC Fe and BCC Cr) − VEC plots. 
This emphasizes the significance of selecting an appropriate Md struc
ture for predicting phases in Co-free RHEAs. 

Discussion 

Effect of ΔHmix and δ on the stability of solid solution phases 

According to the study by Guo et al., a two-dimensional ΔHmix − δ 
plot is essential for distinguishing between solid solution phases and 
amorphous phases in HEAs [115]. Singh et al. [104] noted the limita
tions of phase formation prediction based on the entropy of mixing; 
instead, the significance of the enthalpy of mixing and atomic size dif
ferences in the interpretation of disordered solid solution phase forma
tion was emphasized. In the present study, the enthalpy of mixing and 
atomic size differences were also the most important parameters for 

Fig. 3. The distribution of δ superimposed Md for FCC Ni (a), BCC Fe (b), BCC Cr (c) and VEC (d) in BCC-structured RHEAs.  

Fig. 4. The distribution of δ superimposed on ΔSmix, ΔHmix and Ω in BCC-structured RHEAs.  
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determining BCC phase formation in Co-free RHEAs. The enthalpy of 
mixing ΔHmix is the miscibility of equimolar elements in binary liquid 
alloys [116]. Theoretically, the closer H is to 0, the more the atoms tend 
to be distributed in a disordered manner, favoring the formation of solid 
solution phases; conversely, the more negative H is, the stronger the 
bonding between the two elements is, favoring the formation of inter
metallic phases. Since Zhang et al. [28] proposed the ΔHmix range of − 15 
to 5 kJ⋅mol− 1 for solid solution formation rules in HEAs, it has been 
extended to –22 to 7 kJ⋅mol− 1 through the expansion of multicomponent 
alloy databases [117]. The criterion of ΔHmix ≥ -16.25 kJ⋅mol− 1 for solid 
solution phases in lightweight HEAs was defined by Feng et al. [118] 
and verified by an AlxCrFeMnTiy alloy system. Furthermore, through the 
study of 16 RHEAs, Gao et al. [57] revealed that both the sign and ab
solute value of ΔHBCC

mix are not necessarily in accordance with ΔHliq
mix, 

which is calculated by the Miedema model. In general, the range of 
ΔHmix for solid solution phase formation in HEAs is sensitive to the alloy 
system and component, and the value of ΔHmix may change with the 
addition of FCC, BCC or HCP structural elements. Therefore, in this 
work, the solid solution phase formation rules in Co-free RHEAs 
considering the presence or absence of the nontransition element Al 
were considered. Two distinctly different ΔHmix ranges for solid solution 
phase formation in Co-free RHEAs are proposed: − 6.24 − − 2.72 
kJ⋅mol− 1 and − 16.84 − − 3.99 kJ⋅mol− 1 for Co-free RHEAs without and 
with the addition of Al, respectively. Notably, the Al-containing RHEAs 
Al5(TiZrHfNb)95 and Al3(TiZrHfNb)97 are listed in Table. A1, have larger 
ΔHmix values than the upper limit of BCC phase formation rules proposed 
in this work, which are − 3.97 and − 1.46 kJ⋅mol− 1, respectively. This is 
because the limits are defined by as-cast Co-free RHEAs, whereas these 
two alloys are in the recrystallized state. The as-homogenized/ 
recrystallized Co-free RHEAs were added to show more information. 

The Hume-Rothery rules state that small atomic size differences 
between constituent elements are one of the necessary conditions for the 
formation of solid solution phases in binary alloys [119]. As HEAs lack 
dominant elements, each constituent element can be regarded as a solute 
in relation to the others. The disorder in the distribution of solute atoms 
among solvent atoms is disrupted by large differences in atomic size. 
This causes lattice distortions and introduces strain energy, which re
duces the stability of the solid solution phase. In addition, significant 
lattice distortions can impede atomic diffusion during solidification, 
resulting in the formation of intermetallic phases and potentially 
amorphous phases. The geometric factor δ is a widely used parameter for 
representing the atomic size differences among the constituent elements 
in HEAs. Generally, excess δ inhibits atomic diffusion and the formation 
of disordered solid solution phases, resulting in the generation of 
intermetallic compounds in HEAs [27,117,120]. Therefore, the mixed 
phases in Co-free RHEAs exhibit higher δ values than solid solution 

phases as shown in Fig. 4b. It was initially proposed by summarizing 
multicomponent alloys from the literature that disordered solid solution 
phases are more stable in HEAs when δ ≤ 6.5 % [28]. Subsequently, 
Zhang et al. [27] extended the upper limit of δ to 6.6 % with the 
development of new multicomponent HEAs. Guo et al. [117] reported 
that solid soliton phases can still form in HEAs even when δ is as high as 
8.5 %, which is based on the data from amorphous phase and solid so
lution phase alloy systems. The phase formation rules in HEAs should be 
promptly revised due to the rapid development of new multicomponent 
HEA systems. The values of δ are also affected by the alloy components 
and should be discussed separately for different alloy systems. There
fore, this work proposes δ limits of 6.28 % and 7.63 % for the formation 
of solid solution phases in Co-free RHEAs with and without the addition 
of Al, respectively. The next section will explore the reasons for the 
different δ limits. Although many other parameters, such as γ [121], Λ 
[122], Δχ [123] and ϕ [124], have been proposed to predict the phase of 
HEAs, the six parameters ΔSmix, ΔHmix, Ω, δ, Md and VEC are the most 
widely used parameters in current research. 

Effect of the nontransition metal Al on the phase stability of RHEAs 

Although pure aluminum has an FCC structure, Al is an important 
BCC phase tuning element for HEAs due to its BCC stabilizing nature and 
high solubility in Ti, Hf and Zr. According to previous reports, the phase 
components of CoCrCuFeNi alloys transition from a single FCC phase to 
a mixture of FCC and BCC phases and eventually transform into a BCC 
phase when the Al content reaches 2.8 at. % [125]. Guo et al. [29] 
proposed a correlation between VEC and the phase stability of HEAs in 
which VEC ≤ 6.87 favors the formation of the BCC phase, and FCC is 
more stable when VEC ≥ 8.0. The VEC values for the HEAs decreased 
from more than 8.0 to less than 6.87 with the addition of Al, resulting in 
a transition from the FCC phase to the BCC phase, as Al has the lowest 
VEC value compared to that of transition metals. The IM phase can be 
induced into Co-free RHEAs with the addition of Al due to the strong 
interaction between Al and constitutive elements of Co-free RHEAs, such 
as Ti and Zr [38,42,126]. It was found that C14Laves and IM phases are 
induced into the AlxNbTiVZr alloy with a higher Al content, and the 
volume fraction of the second phases is proportional to the Al content 
[38]. The large negative enthalpy of mixing leads to the aggregation of 
atoms in RHEAs, resulting in the formation of an ordered solid solution 
or IM phase [127]. This is exemplified by the large negative ΔHmix

AB be
tween Al and the other elements [128]. As illustrated in Fig. 5b, the 
addition of Al results in a decrease in the formation range for the ΔHmix 
of BCC phases from − 6.24 − 2.72 kJ⋅mol− 1 to − 16.84 − − 3.99 
kJ⋅mol− 1. The Al-containing RHEAs exhibits overall larger negative 
ΔHmix values than did the Al-free RHEAs, which can be explained by 

Fig. 5. Effect of Md for FCC Ni (a), BCC Fe (b) and BCC Cr (c) on VEC.  
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orbital hybridization. The electrons in the p-orbitals of Al easily transfer 
to the partially filled d-orbitals of the constitutive elements due to the 
high electron density of the p-orbitals and the high Fermi level of Al 
[102,129]. The hybrid pd-orbitals between Al and the constitutive ele
ments cause the Al-X (X is a constitutive element) bonds to be shorter 
and stronger than the bonds among the constitutive elements. Therefore, 
Al-containing RHEAs have a more negative ΔHmix than Al-free RHEAs. 
Although Al and some refractory elements, such as Nb, Ti and Ta, have 
similar atomic sizes, the δ limit for BCC phase stability in Al-containing 
RHEAs is 6.28 %, which is lower than the δ limit of 7.63 % in Al-free 
RHEAs due to the large negative enthalpy of mixing. According to the 
solid solution formation rules proposed by Zhang et al. [28], the ΔHmix 
values of BCC phase formation rules in Al-free RHEAs are in the range of 
− 15 ≤ ΔHmix ≤ 5 kJ⋅mol− 1, whereas the BCC phases in Al-containing 
RHEAs remain stable even when the ΔHmix values are lower than this 
range. In contrast, the tolerance range of δ values for BCC phase stabi
lization in Al-free RHEAs is extended to 7.63 %, while the δ limit of 6.28 
% for BCC phase formation in Al-containing RHEAs is in the range 
proposed by Zhang et al., which is δ ≤ 6.6 %. Therefore, the sensitivity of 
the BCC phase stability of Co-free RHEAs to ΔHmix and δ is likely 
determined by the presence or absence of Al. As Al is added, Co-free 
RHEAs become more sensitive to the values of δ than to the values of 
ΔHmix. Accordingly, it is necessary to consider alloying systems with or 
without Al separately and select appropriate parameters when predict
ing the phase of Co-free RHEAs. 

Conclusions 

In the present study, the semiempirical parameters Md, VEC, ΔSmix, 
ΔHmix, Ω and δ of multicomponent Co-free RHEAs were carefully 
calculated to determine the solid solution phase formation rules, taking 
into account the effect of Al. The following conclusions were reached:  

(1) The parameters ΔHmix and δ are more effective at distinguishing 
the BCC phase and BCC + IM mixed phase stabilities in Co-free 
RHEAs than are other semiempirical parameters.  

(2) A clear difference in the ΔHmix − δ plot was observed for the Co- 
free RHEAs depending on the presence or absence of Al. The Al- 
containing RHEAs exhibited overall larger negative ΔHmix values 
than did the Al-free RHEAs. The mixed phases in Co-free RHEAs 
exhibit higher δ values than solid solution phases.  

(3) The solid solution phases in Co-free RHEAs without the addition 
of Al simultaneously occur when − 6.24 ≤ ΔHmix ≤ 2.72 kJ⋅mol− 1 

and δ ≤ 7.63 %. For Co-free RHEAs with the addition of Al, solid 

solution phases are prone to form when − 16.84 ≤ ΔHmix ≤ -3.99 
kJ⋅mol− 1 and δ ≤ 6.28 %. 
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Appendix  

Table A1 
Compositions of Co-free RHEAs and the parameters ΔSmix, ΔHmix, Ω, δ, Md, VEC, phases and state. Note: the intermetallic phases are denoted as IM.  

Materials ΔSmix 
(J⋅K- 
1⋅mol-1) 

ΔHmix 
(kJ⋅mol- 
1) 

Ω δ Md VEC Phase State Ref. 

M in FCC 
Ni 

M in BCC 
Fe 

M in BCC 
Cr 

Al0.25CrNbTiVZr 14.34 − 8.49 3.67 8.46 1.998 2.064 2.371 4.71 BCC +
IM 

as- 
homogenized 

[31] 

Al0.25HfNbTiZr 12.71 − 5.04 5.67 4.92 2.548 2.664 3.216 4.18 BCC as-cast [32] 
Al0.25NbTaTiV 12.71 − 4.82 6.45 3.82 2.031 2.162 2.681 4.65 BCC as-cast [33] 
Al0.3HfNbTaTiZr 14.43 − 3.99 8.81 4.97 2.480 2.615 3.269 4.32 BCC as-cast [102] 
Al0.3NbTa0.8Ti1.4V0.2Zr1.3 13.46 − 4.86 6.41 5.30 2.356 2.490 2.928 4.34 BCC as-cast [34] 
Al0.3NbTaTi1.4Zr1.3 12.63 − 4.41 6.76 4.83 2.384 2.525 2.992 4.34 BCC as-cast [34] 
Al0.4Hf0.6NbTaTiZr 14.50 − 6.33 5.49 4.93 2.426 2.540 3.124 4.32 BCC as-cast [103] 
Al0.5Cr0.5MoNbTiZr 14.53 − 11.84 2.77 7.03 2.081 2.123 2.405 4.70 BCC +

IM 
as- 
homogenized 

[35] 

Al0.5Cr1.5NbTiZr 12.95 − 13.84 1.97 8.87 1.999 2.002 2.272 4.70 BCC +
IM 

as- 
homogenized 

[35] 

(continued on next page) 
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Table A1 (continued ) 

Materials ΔSmix 
(J⋅K- 
1⋅mol-1) 

ΔHmix 
(kJ⋅mol- 
1) 

Ω δ Md VEC Phase State Ref. 

M in FCC 
Ni 

M in BCC 
Fe 

M in BCC 
Cr 

Al0.5CrMo0.5NbTiZr 14.53 − 12.84 2.47 8.03 2.040 2.063 2.339 4.70 BCC +
IM 

as- 
homogenized 

[35] 

Al0.5CrNb0.5TiV 12.97 − 11.63 2.27 6.28 1.741 1.713 2.004 4.75 BCC as-cast [36] 
Al0.5CrNbTiVZr 14.70 − 11.64 2.68 8.26 1.994 2.017 2.310 4.64 BCC +

IM 
as- 
homogenized 

[31] 

Al0.5HfNbTaTiZr 14.70 − 7.67 4.56 4.95 2.459 2.558 3.187 4.27 BCC as-cast [102] 
Al0.5HfNbTiZr 13.15 − 10.96 2.61 4.95 2.512 2.574 3.095 4.11 BCC as-cast [32] 
Al0.5Mo1.5NbTiZr 12.95 − 10.84 2.78 5.80 2.121 2.184 2.472 4.70 BCC +

IM 
as- 
homogenized 

[35] 

Al0.5Nb0.5Ti2VZr 12.23 − 11.04 2.22 6.28 2.208 2.273 2.589 4.20 BCC as-cast [37] 
Al0.5NbTa0.8Ti1.5V0.2Zr 13.78 − 8.62 3.62 4.93 2.301 2.396 2.825 4.30 BCC as-cast [34] 
Al0.5NbTaTiV 13.15 − 8.40 3.70 3.73 2.023 2.099 2.589 4.56 BCC as-cast [33] 
Al0.5NbTiVZr 13.15 − 10.86 2.55 6.66 2.183 2.230 2.535 4.33 BCC +

IM 
as-cast [38] 

Al0.75HfNbTaTiZr 14.85 − 11.55 2.98 4.92 2.435 2.492 3.094 4.22 BCC as-cast [102] 
Al0.75HfNbTiZr 13.33 − 15.65 1.80 4.96 2.479 2.493 2.986 4.05 BCC as-cast [32] 
Al1.5Cr0.5NbTiZr 12.95 − 24.40 0.99 6.49 2.151 1.997 2.219 4.10 BCC +

IM 
as- 
homogenized 

[35] 

Al1.5Mo0.5NbTiZr 12.95 − 23.00 1.09 5.03 2.204 2.058 2.285 4.10 BCC +
IM 

as- 
homogenized 

[35] 

Al1.5NbTiVZr 13.25 − 21.55 1.16 6.06 2.132 2.012 2.262 4.09 BCC +
IM 

as-cast [38] 

Al12(TiZrHfNb)88 13.19 − 11.90 2.40 4.95 2.505 2.558 3.074 4.10 BCC as- 
recrystallized 

[39] 

Al20Mo10Nb20Ti30V20 12.95 − 14.16 1.87 3.86 1.948 1.911 2.197 4.40 BCC as-cast [41] 
Al3(TiZrHfNb)97 12.30 − 1.46 19.29 4.89 2.567 2.714 3.283 4.21 BCC as- 

recrystallized 
[39] 

Al5(TiZrHfNb)95 12.60 − 3.97 7.18 4.93 2.554 2.680 3.236 4.19 BCC as- 
recrystallized 

[39] 

Al7(TiZrHfNb)93 12.83 − 6.37 4.50 4.93 2.540 2.645 3.190 4.16 BCC as- 
recrystallized 

[39] 

AlCr0.5Mo0.5NbTiZr 14.53 − 18.32 1.63 6.78 2.116 2.060 2.312 4.40 BCC +
IM 

as- 
homogenized 

[35] 

AlCr0.5NbTa0.5Ti3.5 10.84 − 13.85 1.59 3.85 2.100 2.136 2.491 4.23 BCC as-cast [40] 
AlCr0.5NbTaTi3 11.79 − 13.30 1.89 3.81 2.096 2.135 2.548 4.31 BCC as-cast [40] 
AlCr0.5NbTi4 8.91 − 14.44 1.19 3.87 2.103 2.136 2.435 4.15 BCC as-cast [40] 
AlCrMoNbTi 13.38 − 13.60 2.11 5.49 1.796 1.718 1.967 4.80 BCC as-cast [42] 
AlCrMoTaTi 13.38 − 13.76 2.19 5.50 1.817 1.748 2.156 4.80 BCC +

IM 
as- 
homogenized 

[43] 

AlCrMoTiW 13.38 − 10.08 3.09 5.32 1.704 1.618 1.988 5.00 BCC as-cast [44] 
AlCrNbTiVZr 14.90 − 16.33 1.84 7.91 1.986 1.935 2.204 4.50 BCC +

IM 
as- 
homogenized 

[31] 

AlCrNbTiZr 13.38 − 19.52 1.36 7.84 2.075 2.000 2.245 4.40 BCC +
IM 

as- 
homogenized 

[35] 

AlCrNi1.5NbTi3.52V 13.64 − 23.82 1.11 6.69 1.748 1.754 1.931 5.33 BCC +
IM 

as-cast [45] 

AlCuHfNiTiZr 14.90 − 34.11 0.77 9.43 1.911 1.844 1.941 6.00 IM as-cast [46] 
AlFeNiTiVZr 14.90 − 31.33 0.85 9.34 1.706 1.617 1.695 5.67 BMG as-cast [47] 
AlHfNbTaTiZr 14.90 − 15.11 2.23 4.89 2.413 2.431 3.008 4.17 BCC as-cast [102] 
AlHfNbTiZr 13.38 − 19.36 1.42 4.96 2.450 2.420 2.889 4.00 BCC +

IM 
as-cast [32] 

AlMo0.5NbTa0.5TiZr 14.53 − 16.84 1.87 5.03 2.224 2.203 2.542 4.30 BCC as-cast [103] 
AlMoNbTiZr 13.38 − 17.12 1.66 5.45 2.156 2.121 2.379 4.40 BCC +

IM 
as- 
homogenized 

[35] 

AlNb1.5Ta0.5Ti1.5Zr0.5 12.51 − 15.12 1.77 3.46 2.213 2.212 2.563 4.20 BCC as-cast [34] 
AlNb1.5Ta0.5Ti3Zr4 11.58 − 10.48 2.32 5.16 2.478 2.557 2.888 4.10 BCC +

IM 
as- 
homogenized 

[48] 

AlNbNiTaTiW 14.90 − 22.89 1.56 5.17 1.814 1.808 2.192 5.50 BCC +
IM 

as-cast [49] 

AlNbTaTiV 13.38 − 13.44 2.21 3.55 2.011 1.992 2.434 4.40 BCC as-cast [33] 
AlNbTaTiZr 13.38 − 16.16 1.83 4.54 2.291 2.285 2.706 4.20 BCC +

IM 
as-cast [50] 

AlNbTiV 11.53 − 16.25 1.38 3.94 1.958 1.869 2.141 4.25 BCC as-cast [51] 
AlNbTiVZr 13.38 − 17.44 1.52 6.33 2.155 2.110 2.385 4.20 BCC +

IM 
as-cast [38] 

AlNbTiVZr0.5 13.15 − 17.19 1.51 5.60 2.067 2.003 2.276 4.22 BCC +
IM 

as- 
homogenized 

[52] 

AlNbTiZr 11.53 − 21.50 1.04 4.81 2.308 2.235 2.481 4.00 BCC +
IM 

as-cast [53] 

Cr0.1Hf0.5Mo0.5NbTiZr 13.60 − 0.96 33.53 6.21 2.373 2.542 2.991 4.54 BCC +
IM 

as- 
homogenized 

[54] 

Cr0.3Hf0.2NbTaZr 12.04 0.02 1,636.74 7.05 2.352 2.527 3.120 4.74 BCC +
IM 

as-cast [55] 

(continued on next page) 
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Table A1 (continued ) 

Materials ΔSmix 
(J⋅K- 
1⋅mol-1) 

ΔHmix 
(kJ⋅mol- 
1) 

Ω δ Md VEC Phase State Ref. 

M in FCC 
Ni 

M in BCC 
Fe 

M in BCC 
Cr 

Cr0.5Hf0.2NbTaZr 12.38 − 1.61 20.32 7.73 2.286 2.448 3.022 4.81 BCC +
IM 

as-cast [55] 

Cr0.5Mo1.5NbTiZr 12.95 − 4.96 6.40 7.25 2.046 2.186 2.499 5.00 BCC +
IM 

as- 
homogenized 

[35] 

Cr0.5MoNbTaVW 14.70 − 4.83 8.81 4.10 1.756 1.902 2.482 5.45 BCC as-cast [56] 
Cr0.75Hf0.2NbTaZr 12.55 − 3.19 10.26 8.35 2.214 2.360 2.913 4.89 BCC +

IM 
as-cast [55] 

Cr1.5Mo0.5NbTiZr 12.95 − 6.56 4.55 8.98 1.964 2.065 2.365 5.00 BCC +
IM 

as- 
homogenized 

[35] 

Cr2MoNbTaVW 14.53 − 4.82 8.26 5.22 1.625 1.721 2.229 5.57 BCC as-cast [56] 
CrHf0.2NbTaZr 12.57 − 4.40 7.38 8.78 2.150 2.282 2.817 4.95 BCC +

IM 
as-cast [55] 

CrHfMoNbTaTiVWZr 18.27 − 4.84 9.89 7.63 2.052 2.191 2.783 5.00 BCC as-cast [57] 
CrMoNbTaV 13.38 − 4.64 7.67 5.09 1.715 1.831 2.307 5.40 BCC as-cast [58] 
CrMoNbTaVW 14.90 − 4.89 8.63 4.65 1.705 1.832 2.384 5.50 BCC as-cast [56] 
CrMoNbTaW 13.38 − 6.24 6.35 4.82 1.738 1.876 2.461 5.60 BCC as-cast [59] 
CrMoNbTiZr 13.38 − 5.76 5.53 8.19 2.005 2.126 2.432 5.00 BCC +

IM 
as- 
homogenized 

[35] 

CrMoTaTi 11.53 − 5.50 5.40 5.92 1.797 1.926 2.436 5.25 BCC as-cast [60] 
CrMoVW 11.53 − 0.50 63.13 3.59 1.473 1.542 2.009 5.75 BCC as-cast [61] 
CrNbTa0.25TiZr 12.71 − 4.60 6.39 8.51 2.125 2.256 2.610 4.76 BCC +

IM 
as-cast [62] 

CrNbTaTi 11.53 − 4.50 6.51 6.02 1.939 2.094 2.610 5.00 BCC as-cast [60] 
CrNbTaTiZr 13.38 − 3.68 8.94 7.85 2.140 2.290 2.759 4.80 BCC +

IM 
as-cast [50] 

CrNbTiVZr 13.38 − 4.64 6.45 8.67 2.003 2.115 2.438 4.80 BCC +
IM 

as- 
homogenized 

[63] 

CrNbTiZr 11.53 − 5.00 5.19 8.77 2.119 2.241 2.548 4.75 BCC +
IM 

as- 
homogenized 

[63] 

CrTaTiV 11.53 − 4.50 6.14 6.28 1.795 1.913 2.444 5.00 BCC +
IM 

as-cast [65] 

CuFeHfTiZr 13.38 − 15.84 1.65 10.41 1.942 2.038 2.219 6.20 IM as-cast [66] 
CuFeNiTiVZr 14.90 − 18.78 1.47 9.74 1.491 1.551 1.465 7.00 BMG as-cast [47] 
CuHfNiTiZr 13.38 − 27.36 0.94 10.32 1.913 2.006 2.123 6.60 BMG as-cast [66] 
CuNbNiTiZr 13.38 − 21.28 1.25 9.25 1.733 1.841 1.752 6.80 BMG as-cast [67] 
FeMoNiTiVZr 14.90 − 19.78 1.59 9.29 1.647 1.722 1.850 6.17 BMG as-cast [47] 
Hf0.25NbTaW0.5 10.51 − 3.44 9.46 3.62 2.154 2.374 3.193 5.09 BCC as-cast [68] 
Hf0.5Nb0.5Ta0.5Ti1.5Zr 12.42 1.88 15.42 4.79 2.508 2.702 3.264 4.25 BCC as-cast [69] 
Hf0.5NbTi2VZr 12.60 0.00 N/A 6.42 2.301 2.471 2.912 4.36 BCC +

IM 
as- 
homogenized 

[31] 

Hf18.49Mo8.97Nb12.7Ta0.19Ti32.07Zr27.58 12.66 − 0.32 90.14 5.45 2.511 2.683 3.204 4.31 BCC as-cast [70] 
Hf20.39Mo5.57Nb12.05Ta0.80Ti32.61Zr28.58 12.49 0.29 97.28 5.20 2.557 2.731 3.276 4.24 BCC as-cast [70] 
Hf23Nb22Ti37V15W3 11.88 − 0.05 529.98 5.63 2.282 2.461 3.069 4.43 BCC as-cast [71] 
Hf28.33Mo1.55Nb6.74Ta6.74Ti28.33Zr28.33 12.47 1.01 28.68 4.74 2.649 2.823 3.497 4.17 BCC as-cast [70] 
Hf5Nb55Ta25Ti15 9.23 1.40 18.13 2.30 2.212 2.438 3.022 4.80 BCC as-cast [72] 
HfMo0.25NbTaTiZr 14.34 1.56 23.35 5.27 2.469 2.660 3.334 4.48 BCC as-cast [73] 
HfMo0.5NbTaTiZr 14.70 0.60 63.15 5.47 2.427 2.615 3.272 4.55 BCC as-cast [73] 
HfMo0.75NbTaTiZr 14.85 − 0.21 180.43 5.65 2.389 2.574 3.216 4.61 BCC as-cast [73] 
HfMoNbTaTi 13.38 − 1.44 24.87 4.86 2.236 2.428 3.125 4.80 BCC +

IM 
as-cast [74] 

HfMoNbTaTiVWZr 17.29 − 3.44 12.75 6.60 2.166 2.333 2.969 4.88 BCC as-cast [57] 
HfMoNbTaTiVZr 16.18 − 1.47 27.83 6.68 2.238 2.403 2.997 4.71 BCC as-cast [57] 
HfMoNbTaTiWZr 16.18 − 3.59 12.36 6.02 2.254 2.436 3.107 4.86 BCC as-cast [75] 
HfMoNbTaTiZr 14.90 − 0.89 43.32 5.78 2.354 2.536 3.164 4.67 BCC as-cast [76] 
HfMoNbTaW 13.38 − 4.64 8.73 5.43 2.113 2.296 3.104 5.20 BCC as-cast [59] 
HfMoNbTiZr 13.38 − 1.60 20.44 6.10 2.380 2.546 3.075 4.60 BCC as-cast [77] 
HfMoTaTiVZr 14.90 − 2.33 15.90 7.15 2.259 2.415 3.053 4.67 BCC as-cast [57] 
HfMoTaTiZr 13.38 − 1.92 17.79 6.08 2.402 2.576 3.264 4.60 BCC as-cast [76] 
HfNb0.18Ta0.18Ti1.27Zr 11.44 0.97 26.50 4.48 2.653 2.830 3.485 4.10 BCC +

IM 
as-cast [78] 

HfNbTaTiV 13.38 0.64 52.98 5.79 2.235 2.417 3.131 4.60 BCC as-cast [79] 
HfNbTaTiVZr 14.90 0.44 82.67 6.59 2.353 2.527 3.169 4.50 BCC as-cast [80] 
HfNbTaTiWZr 14.90 − 2.11 19.18 5.71 2.372 2.565 3.297 4.67 BCC as-cast [75] 
HfNbTaTiZr 13.38 2.72 12.41 4.98 2.515 2.710 3.403 4.40 BCC as-cast [81] 
HfNbTiVZr 13.38 0.16 192.48 7.05 2.379 2.535 3.081 4.40 BCC as-cast [82] 
HfNbTiZr 11.53 2.50 10.75 4.86 2.588 2.766 3.352 4.25 BCC as- 

homogenized 
[83] 

HfTa0.2Ti2V0.5Zr 11.60 − 0.63 39.97 5.95 2.494 2.666 3.263 4.15 BCC as-cast [84] 
Mo0.5NbHf0.5ZrTi 12.97 − 0.25 123.44 5.72 2.404 2.579 3.034 4.50 BCC as-cast [58] 
Mo10(NbTaTiZr)90 13.08 0.14 248.36 5.22 2.305 2.505 3.008 4.65 BCC as-cast [85] 
Mo15(NbTaTiZr)85 13.31 − 0.87 39.46 5.35 2.263 2.458 2.951 4.73 BCC as-cast [85] 
Mo5(NbTaTiZr)95 12.60 1.26 25.48 5.04 2.347 2.551 3.066 4.58 BCC as-cast [85] 
MoNb1.3TaTiW0.4 12.91 − 4.09 8.86 2.57 2.013 2.216 2.768 5.09 BCC as-cast [86] 

(continued on next page) 
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Table A1 (continued ) 

Materials ΔSmix 
(J⋅K- 
1⋅mol-1) 

ΔHmix 
(kJ⋅mol- 
1) 

Ω δ Md VEC Phase State Ref. 

M in FCC 
Ni 

M in BCC 
Fe 

M in BCC 
Cr 

MoNbTa0.3V 10.84 − 3.23 8.96 3.45 1.781 1.925 2.336 5.30 BCC as-cast [87] 
MoNbTa0.5V 11.24 − 3.27 9.32 3.48 1.806 1.957 2.409 5.29 BCC as-cast [87] 
MoNbTa0.7V 11.44 − 3.27 9.57 3.48 1.829 1.986 2.473 5.27 BCC as-cast [87] 
MoNbTaTi0.25W 12.71 − 6.15 6.38 2.49 1.909 2.105 2.758 5.41 BCC as-cast [88] 
MoNbTaTi0.5W 13.15 − 5.83 6.82 2.61 1.929 2.126 2.764 5.33 BCC as-cast [88] 
MoNbTaTi0.5Zr 13.15 − 2.07 16.95 5.75 2.216 2.401 2.895 4.89 BCC as-cast [89] 
MoNbTaTi0.75W 13.33 − 5.54 7.14 2.66 1.947 2.146 2.770 5.26 BCC as-cast [88] 
MoNbTaTi1.5Zr 13.25 − 1.52 22.15 5.20 2.226 2.419 2.891 4.73 BCC as-cast [89] 
MoNbTaTi2Zr 12.98 − 1.33 24.24 4.98 2.230 2.425 2.889 4.67 BCC as-cast [89] 
MoNbTaTiV 13.38 − 2.56 13.65 3.78 1.941 2.118 2.621 5.00 BCC as-cast [90] 
MoNbTaTiVW 14.90 − 4.22 9.85 3.58 1.893 2.071 2.645 5.17 BCC as-cast [91] 
MoNbTaTiVZr 14.90 − 2.11 17.86 6.24 2.108 2.278 2.744 4.83 BCC as-cast [92] 
MoNbTaTiW 13.38 − 5.28 7.39 2.77 1.963 2.163 2.775 5.20 BCC as-cast [88] 
MoNbTaTiZr 13.38 − 1.76 19.77 5.45 2.221 2.411 2.893 4.80 BCC as-cast [85] 
MoNbTaV 11.53 − 3.25 9.86 3.46 1.859 2.024 2.558 5.25 BCC as-cast [93] 
MoNbTaV0.25 10.69 − 4.36 7.16 2.77 1.931 2.119 2.688 5.31 BCC as-cast [94] 
MoNbTaV0.5 11.24 − 3.92 8.22 3.11 1.904 2.083 2.638 5.29 BCC as-cast [94] 
MoNbTaV0.75 11.47 − 3.56 9.09 3.32 1.880 2.051 2.596 5.27 BCC as-cast [94] 
MoNbTaVW 13.38 − 4.64 8.54 3.15 1.818 1.986 2.600 5.40 BCC as-cast [95] 
MoNbTaW 11.53 − 6.50 5.60 2.32 1.887 2.080 2.751 5.50 BCC as-cast [95] 
MoNbTaWZr 13.38 − 5.44 7.26 6.06 2.098 2.279 2.872 5.20 BCC as-cast [96] 
MoNbTaWZr0.1 12.20 − 6.38 5.99 3.21 1.912 2.104 2.766 5.46 BCC as-cast [96] 
MoNbTaWZr0.3 12.83 − 6.14 6.44 4.32 1.960 2.149 2.793 5.40 BCC as-cast [96] 
MoNbTaWZr0.5 13.15 − 5.93 6.75 5.03 2.004 2.190 2.818 5.33 BCC as-cast [96] 
MoNbTiV 11.53 − 2.75 10.24 4.06 1.870 2.026 2.375 5.00 BCC as-cast [97] 
MoNbTiV0.25Zr 12.71 − 2.60 11.79 6.31 2.181 2.346 2.673 4.76 BCC as-cast [98] 
MoNbTiV0.5Zr 13.15 − 2.67 11.84 6.55 2.145 2.305 2.635 4.78 BCC as-cast [98] 
MoNbTiV0.75Zr 14.85 − 2.70 8.24 6.47 2.114 2.269 2.602 5.00 BCC as-cast [98] 
MoNbTiV1.5Zr 13.25 − 2.71 11.55 6.99 2.036 2.179 2.519 4.82 BCC as-cast [98] 
MoNbTiV2Zr 12.98 − 2.67 11.42 7.06 1.995 2.132 2.476 4.83 BCC as-cast [98] 
MoNbTiV3Zr 12.26 − 2.53 11.26 7.04 1.930 2.057 2.408 4.86 BCC as-cast [98] 
MoNbTiVZr 14.90 − 2.72 8.50 6.53 2.085 2.236 2.571 5.00 BCC as-cast [98] 
MoNbTiZr 11.53 − 2.50 11.20 5.98 2.221 2.392 2.715 4.75 BCC as-cast [98] 
MoNbV 9.13 − 3.11 7.66 3.39 1.737 1.869 2.209 5.33 BCC as-cast [87] 
MoTaVWZr 13.38 − 4.80 7.91 7.09 1.983 2.134 2.740 5.20 BCC +

IM 
as-cast [99] 

Nb0.25Ta0.1Ti0.3V0.25Zr0.1 12.59 − 0.11 269.91 5.66 2.113 2.291 2.722 4.60 BCC as-cast [100] 
Nb0.5TiV0.5Zr 11.05 − 0.11 216.75 6.77 2.348 2.515 2.853 4.33 BCC as- 

homogenized 
[101] 

NbTaTiV 11.53 − 0.25 117.15 3.92 2.039 2.232 2.784 4.75 BCC as-cast [33] 
NbTaTiVZr 13.38 0.32 102.80 6.34 2.220 2.400 2.899 4.60 BCC as-cast [57] 
NbTaTiW 11.53 − 4.50 7.48 2.41 2.067 2.289 2.976 5.00 BCC as-cast [60] 
NbTaTiZr 11.53 2.50 11.65 4.83 2.389 2.598 3.124 4.50 BCC as-cast [85] 
NbTi2VZr 11.08 − 0.16 151.50 6.28 2.229 2.403 2.752 4.40 BCC as-cast [37] 
NbTiV2Zr 11.08 − 1.28 19.36 7.46 2.084 2.225 2.577 4.60 BCC as- 

homogenized 
[63] 

NbTiVZr 11.53 − 0.25 103.75 7.03 2.219 2.379 2.722 4.50 BCC as-cast [64]  
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