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ABSTRACT
The search for better compositions in high entropy alloys is a formidable challenge in materials science. Here, we demonstrate a systematic
Bayesian optimization method to enhance the mechanical properties of the paradigmatic five-element Cantor alloy in silico. This method
utilizes an automated loop with an online database, a Bayesian optimization algorithm, thermodynamic modeling, and molecular dynamics
simulations. Starting from the equiatomic Cantor composition, our approach optimizes the relative fractions of its constituent elements,
searching for better compositions while maintaining the thermodynamic phase stability. With 24 steps, we find Fe21Cr20Mn5Co20Ni34 with
a yield stress improvement of 58%, and with 72 steps, we find Fe6Cr22Mn5Co32Ni35 where the yield stress has improved by 74%. These
optimized compositions correspond to Ni-rich medium entropy alloys with enhanced mechanical properties and superior face-centered-
cubic phase stability compared to the traditional equiatomic Cantor alloy. The automatic approach devised here paves the way for designing
high entropy alloys with tailored properties, opening avenues for numerous potential applications.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179844

I. INTRODUCTION

Metallic alloying has historically been the key factor in opening
up new possibilities for designing materials with desired proper-
ties. The advent of the new class of high entropy alloys (HEAs),1,2

or multi-principal element alloys (MPEAs), represented a paradigm
shift in alloy design strategies. Unlike conventional alloys, which are
typically made up by one or two major atomic species, HEAs are
distinguished by the presence of several metallic species, five
or more, in nearly equal concentration. Mixing many elements
might alter their interaction, providing a chance to get exceptional
mechanical properties, e.g., improved hardness and a higher degree
of fracture resistance.3 Consequently, a key factor that emerged
in HEAs is the richness in composition, which brings additional
degrees of freedom in terms of atomic species, e.g., Mn, Cr, Fe,
Co, Ni, and Cu. A crystalline material, like conventional alloys,
has a periodically ordered structure in terms of positional degrees
of freedom. Meanwhile, a crystalline HEA maintains an ordered
structure in position but shows a disordered pattern in terms of com-
positional degrees of freedom (compositional disorder): the atomic

species are randomly distributed on the lattice sites. Our under-
standing of the effect of the microscopic compositional disorder on
the mechanical properties of HEAs4–7 is limited to the applications
of classical mean-field like ideas of dislocation depinning. The
microscopic origin of their failure mechanisms also remains elusive,
particularly because in experiments it is challenging to probe such
scales.

Gaining insights into the microscopic structure and its relation
to mechanical properties would lead to new design principles for
desired HEAs. However, due to the huge degree of freedom in terms
of composition, finding HEAs with optimal desired properties is also
challenging. Given the aleatory nature of HEAs, the landscape of
mechanical properties in the compositional space is expected to be
rugged.

The compositional search problem can be tackled by extensive
experimentation,8–12 but machine learning methods13–21 as well as
computational approaches22–25 are needed for rapid exploration of
the search space. Classical molecular dynamics (MD) is a method
that allows for the computational probing of the mechanical prop-
erties of different alloy compositions. While still restricted to fairly
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small system sizes, these can be significantly larger than those used
with ab initio methods.

Here, to probe the high-dimensional search space even more
efficiently, we employ active learning methods.26–30 These methods
aim to identify optimal compositions with a minimal computational
cost. We use Bayesian optimization (BO) to initially explore the
search space and then to exploit the gathered information in finding
the optimal composition. We study in silico the equiatomic Can-
tor alloy (FeCrMnCoNi)1 as the paradigmatic HEA and vary its
composition around the equiatomic starting point. A practical
reason for this is, in addition to the large interest in this system, the
availability of MD potentials.

The phase stability of HEAs is a critical factor that influences
the alloy’s properties and performance. The Cantor alloy is known
to have a face-centered cubic (fcc) lattice structure at high tempera-
tures, and if we want to maintain this property, we have to impose
constraints on the available search space. The general benefit of
having an fcc structure is the increased ductility due to the increased
density of slip systems. There are many ways of determining the
lattice structure of a specific composition, such as experimental
investigations,9,10,12,31 estimation based on modified Hume-Rothery
rules32 (see Appendix B), or density functional theory (DFT) calcu-
lations,33 but here we have opted to do it using the computationally
low-cost calculation of phase diagrams (CALPHAD)34 method. This
method uses a thermodynamic database to compute, for example,
the phase fraction of fcc for the given composition and temperature,
and this information can be used to constrain the optimization to
only fcc lattices.

In this work, we introduce for the first time an automated
protocol (see Fig. 1), which combines an online database, a Bayesian

FIG. 1. Workflow of the optimization process, including an online database for data
storage, a Bayesian optimization algorithm determining the next best point in the
composition space xn+1, a thermodynamic analysis of the composition to constrain
the alloy to fcc lattice structure, and finally a molecular dynamics simulation and
the associated analysis of the stress–strain curves.

optimization algorithm for the selection of the subsequent compo-
sition, thermodynamic modeling to ensure fcc phase stability, and
molecular dynamics simulations to probe the mechanical properties.
Our goal is to search for Cantor-like HEAs with optimal mechanical
properties. In the following, we start by exploring the effect of the fcc
constraint on the search space, then describe the search process, and
finally describe the optimized Cantor-like HEAs.

II. METHODS
The main method we use is BO,30,35–37 where the mechanical

properties at each point in the compositional space are represented
by a probabilistic surrogate function, which is constructed based
on currently known input data and is typically a Gaussian process
regressor. This probabilistic representation can then be used for
further measurements based on the chosen utility function: one can
focus on exploration by examining points where the uncertainty in
the probabilistic representation is high, or on exploitation by focus-
ing on points where the value of the mechanical property of interest
is expected to be high. Gaussian process regressors require far fewer
hyperparameters to be fitted compared, for example, to neural net-
works, and this translates to significantly smaller datasets needed
during BO.

We take as the input the point in the composition space (search
space) x = [cFe, cCr, cMn, cCo, cNi], which is just a vector of the atomic
composition ci of the Cantor-like alloy. As the constraint ∑ici = 1
sets up a 4-dimensional manifold in the 5D space, we can simply do
the optimization in the 4D space given by the first 4 compositions.
The output used here is the yield stress τy, but one could just as well
optimize for any other mechanical property.

We use Gaussian Process Regression (GPR),38 implemented in
the scikit-learn software,39 where the desired quantity y for each
point x in the search space is represented by a Gaussian distribu-
tion with mean μ(x) and standard deviation σ(x). The kernel used
in the GPR is based on the anisotropic radial basis function,

kRBF[y(x), y(x′)] = k2
0 exp(−

N−1

∑

i=1

(xi − x′i)
2

2ℓ2
i
), (1)

where xi is the ith component of x and ℓi is a length scale related
to the ith component. To account for the variation in the yield
stress due to the specific atomic configuration, a white noise ker-
nel, kWN[y(x), y(x′)] = w2δ(∣x − x′∣), where δ is the Dirac delta
function and the norm is the Euclidean distance, is added. The
total kernel is then given by the covariance cov[y(x), y(x′)] = kRBF
+ kWN. The kernel hyperparameters w, k0, and ℓi optimized in the
GPR algorithm are chosen to have the following initial values: w
is initially the standard deviation of the yield stress in the current
dataset Δτy, k0 is four times this value, and the length scales ℓi are
bounded by the minimum and maximum spacing of the data points
in the dataset40 (i.e., the minimum and maximum differences of ci
in the dataset) and initialized to the mean of these two values. The
evolution of the hyperparameters during the search is discussed in
Appendix A.

The optimization starts from the equiatomic Cantor alloy, and
the next two points are picked from the neighboring grid points
to ensure fcc stability. After this, the next point is picked based
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on the highest value of the utility function. We have here chosen
as the utility function the expected improvement, which is defined
as EI(x) = ∫

∞
y⋆ (y − y⋆) 𝒩 μ(x),σ(x)(y) dy, where y⋆ is the current

highest value of the desired quantity and 𝒩 μ,σ is the probability den-
sity function of the Gaussian distribution with mean μ and standard
deviation σ.

This type of optimization in a grid can quite rapidly run into
the situation where the maximal expected improvement is achieved
at a point already previously visited. There are multiple choices one
can make here: one can consider the optimization converged, pick
a random point from the search space,41 or pick the point in the
grid with the next highest expected improvement, which is what
we have done here. Here, we consider the optimization to have
converged, when the expected improvement normalized by the
current best value reaches a value less than 10−3. This point is fairly
arbitrary and other thresholds could be set.

To restrict the search to only fcc alloys, we perform CAL-
PHAD calculations using the PyCalphad42 software and the associ-
ated MPEA database. In the CALPHAD method, thermodynamic
calculations are performed based on a thermodynamic database.
By minimizing the Gibbs free energy, one can find the phase
with the lowest free energy under a given set of conditions. Using
this method, we compute the fcc phase fraction f at the desired
temperature and atmospheric pressure for each composition in the
search space. This can be done for each of the points as they are given
by the BO algorithm, but as our search grid is sufficiently small, we
have precomputed all the values and find them from a lookup table.
To test the accuracy of our CALPHAD calculations, we did the same
calculations with the FactSage software43 and the FSstel database for
a few compositions (the compositions of iterations 1, 24, 50, and
74). In the region where 0 < f < 1 based on FactSage, PyCalphad
on average overestimates f by 19%. However, at 900 K, f = 1 for
all the compositions, except for Fe5Cr30Mn5Co25Ni35 (iteration 50,
f = 0.91), which becomes fully fcc only at 985 K.

To test the mechanical properties of each composition, we
perform MD simulations using LAMMPS.44 These are shear
simulations performed in three dimensions with periodic bound-
ary conditions. The interaction between the atoms is given by the
modified embedded atom method (MEAM) interatomic potential
and using the Cantor HEA parameters.45 It is acknowledged that
MEAM tends to overestimate the yielding point in several Cantor
family alloys, but its value in conducting composition searches for
alloys with improved mechanical properties remains significant.
MD simulations using MEAM consistently align with experimental
results, reflecting a comparative trend in yield stress across
various Cantor-like alloy compositions,45 and are known to predict
well thermal properties such as melting points for several Cantor
family alloys, as demonstrated in Ref. 46.

The system starts with all atoms initialized in an fcc nickel
crystal structure, with the [110] direction aligning with the x-axis,
the [−111] direction aligning with the y-axis, and the [1–12] direc-
tion aligning with the z-axis. Atoms are then substituted according
to the proportions provided by the BO algorithm (i.e., xn+1), with
atomic species being Ni, Co, Cr, Fe, and Mn. The simulation box
is then incrementally sheared along the x-direction with respect to
the y-direction by δγ, which is 0.1%, and at each strain increment,
MD simulations are performed for a duration of 1 ps. Throughout
the shearing process, we record the stress–strain response, which

provides a detailed stress–strain curve for analysis. The MD
simulations are conducted at 900 K.

The system size used here is 1080 atoms, and the effects on
increasing system size are discussed in Appendix C. The mechanical
property we focus on is the yield stress τy, which is determined as the
maximal shear stress τ achieved before a stress drop of at least 1 GPa.
In addition, the shear modulus, determined as the ratio between the
yield stress and yield strain, G = τy/γy is recorded. For each com-
position, 100 realizations of the atomic configurations are simulated
and the mean values (and the standard deviations) of the yield stress
and shear modulus are used. Note that one could naturally compute
the mechanical response in all the main crystallographic directions
and, for example, average the yield stress over these.

The workflow (illustrated in Fig. 1) starts with a database stored
in the Aalto Materials Digitalization Platform (AMAD), which has
an initial set of inputs (for the first step, the composition of the
equiatomic Cantor alloy c = 0.2) and outputs. The database is read
automatically by the BO algorithm, which performs GPR in a grid
with a concentration step Δc = 0.01 and boundaries 0.05 ≤ c ≤ 0.35,
which is the window in which we let the concentrations to vary
around the equiatomic starting point. The algorithm outputs a list of
points that correspond to the highest values of the utility function.
The result of the CALPHAD computation is checked for each
of these points, until a point with a sufficiently high fcc phase
fraction (here f = 1) is found. The composition corresponding to
this point is given as an input to the shear simulation, and after the
yield stress is determined, the composition and the corresponding
yield stress are written back to the AMAD database. This process
is automatically iterated, until the algorithm has converged to an
optimal composition.

Here, the role of the AMAD database is just to store a table
of values. It provides easy interfacing with the data from the com-
putational cluster running the simulations, as well as for humans
interacting with the data via a web interface.

As the time required to perform a single CALPHAD computa-
tion (less than 1 s) is small, it can be done for the whole search grid
of 553 401 points in 154 CPU hours. Meanwhile, with 16 CPUs, each
LAMMPS simulation takes around 7 min and performing these in
parallel means that each iteration takes roughly 7 min. This then
means that 24 iterations can be performed in around 3 h and 80
iterations in around 9 h, with the number of CPU hours being 4480
and 14 933, due to the 100 realizations for each run.

III. RESULTS
A. Mapping and exploration of the composition space

The effect of the fcc lattice structure constraint changes with
temperature. As our search grid is small enough, we can precompute
the fcc phase fraction of each composition at different temperatures
and see exactly how the fcc constraint limits the search space. The
cumulative distributions of phase fractions are shown in Fig. 2, and
one can see that, for example, at 700 K, less than 20% of the search
space has a single phase fcc structure, whereas at 1100 K, this is true
for almost 80% of the search space.

From Fig. 2, one can also see that based on CALPHAD calcula-
tions, our starting point—the equiatomic Cantor alloy—itself only
has a single phase fcc structure at temperatures above ∼900 K.31
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FIG. 2. Cumulative probability density function of the fcc phase fraction (consid-
ering all the compositions in our grid) for a few temperatures. The vertical line
indicates the fcc phase fraction of the equiatomic Cantor alloy.

Therefore, we have chosen to perform our optimization at this
temperature, as it provides the most interesting constrained opti-
mization problem while maintaining the desired structure for the
starting point alloy.

B. Search process
Starting from the equiatomic Cantor alloy and picking the next

two initial points from its immediate neighborhood means that the
yield stress does not change much in this initial stage. As can be
seen from Fig. 3, during the subsequent BO steps, the composition
does not change significantly [panel (c)] and the best yield stress
does not change (the black solid line in [panel (a)]. After the first
16 iterations, BO starts rapidly replacing Mn with Ni and, in just

FIG. 3. Evolution of (a) the yield stress τy and (b) the shear modulus G as a func-
tion of the iteration number, as well as (c) the composition used for each iteration.
The black solid line in panel (a) represents the current best yield stress value τ⋆y ,
and the black dashed line represents the expected improvement over this current
best value. The solid vertical line indicates the beginning of the BO process, and
the dashed vertical lines in panel (c) indicate the iterations where a new current
best value of the yield stress was achieved.

eight iterations, achieves an improvement of 58% compared to the
starting point. After this point, the BO algorithm keeps exploring
(mostly by decreasing cFe) and, at 50 iterations, has achieved an
improvement of additional 13% points. The final best composition
Fe6Cr22Mn5Co32Ni35, before we consider the algorithm to have
converged, is achieved at iteration 72 where the total improvement
compared to the starting point is 74%. The algorithm converges at
80 iterations. See Appendix B for additional details on the evolution
of different parameters during the search and Appendix D for the
goodness-of-fit analysis.

The evolution of the shear modulus G can also be seen in panel
(b) of Fig. 3. It roughly follows the same trend as the yield stress,
so the optimization is not optimizing for yield stress by finding
some strong but brittle alloys, but rather concomitantly optimiz-
ing for yield stress and yield strain. The highest shear modulus
G = 66.9 ± 4.2 GPa is found at iteration 57 and corresponds to a 50%
improvement over the initial value.

C. Optimized fcc Cantor-like HEA
The average stress–strain curves of certain iterations can be

seen in Fig. 4. As explained in Sec. III B, most of the improvement
has already been made by iteration 24, when the algorithm has
moved to the Ni-rich part of the search space. After that (iterations
50 and 72 shown), the improvements are much more minor. The
last three iterations shown are characterized by high Ni concen-
trations and low Mn and Fe concentrations, effectively converging
to a NiCoCr medium entropy alloy. One realization of the alloy
corresponding to iteration 72 can be seen in the top left corner of
Fig. 4.

FIG. 4. Stress–strain curves for the initial equiatomic Cantor alloy (iteration 1) and
for three iterations that had the optimal yield stress up to that point in the optimiza-
tion. The inset shows the fcc phase fraction f , computed using CALPHAD, as a
function of temperature T for the same iterations. The top left corner shows one
realization of the composition corresponding to iteration 72 [colors as in Fig. 3(c)],
and in the bottom, the dislocation loop formed in the sample during yielding at the
stress peak is shown.
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Very similar results are obtained with larger, more realistic,
system sizes (see Appendix C). One can also see that the improve-
ment in yield stress also corresponds to an improvement in the yield
strain. The peak in the stress–strain curve is accompanied by the
appearance of dislocations (bottom, Fig. 4), with the resulting flow
being accompanied by a decrease in the stress beyond the peak. In
the inset of Fig. 4, the fcc phase fraction f is plotted as a function of
the temperature T for each of the compositions shown in the main
figure. As explained earlier, the chosen T = 900 K is very close to the
value where the fcc phase fraction of equiatomic Cantor starts to dip
below unity as the temperature is decreased. However, all three of
the optimized compositions have higher fcc phase stability, the final
one (iteration 72) having a single phase fcc structure at temperatures
above around 600 K.

IV. DISCUSSION
We have implemented an automated system for exploring the

compositional space of Cantor-like HEAs, under the constraint of
a single phase fcc structure. This is done by utilizing Bayesian
optimization, CALPHAD calculations of the fcc phase fractions, and
molecular dynamics shear simulations.

The optimization starts from the equiatomic FeCrMnCoNi
alloy and, in 72 iterations, moves to Fe6Cr22Mn5Co32Ni35, which is
effectively a NiCoCr47 medium entropy alloy (MEA). The improve-
ment in the yield stress is 74%. Already at iteration 24, a yield
stress improvement of 58% is found with Fe21Cr20Mn5Co20Ni34.
Both of these compositions have higher fcc phase stability than the
equiatomic Cantor alloy. The preference to high-Ni alloys is not
exactly a surprise,45,47–49 and in the realm of low entropy alloys,
Ni-based superalloys50 are commonly used in high-temperature
applications.

From the viewpoint of advanced Bayesian applications, there
are two issues at hand we should mention. The first one is the
feasibility of solutions issue. In our case, this turns out to be of
secondary importance since the pruning of many candidate com-
positions due to not filling the constraint (fcc fraction in our case)
is not a major challenge. If the solution space would be much
more restricted—even in similar cases as ours (optimizing alloy
compositions in silico with one or more material parameters to
be optimized)—exploiting information to concentrate the search in
more optimal phase space regions is the way to go. Our case is a
typical example in that the constraint of the optimization is a binary
variable, also adaptable to Bayesian approaches, and in such cases,
one would often like to know the boundaries of the feasible region, a
hard task.27,28,51–53

Multiobjective optimization was not needed nor tried here,
as optimizing for yield stress in our system does not seem to
result in strength–ductility trade-offs. Instead, both are concomi-
tantly increased, a feature more commonly seen in hierarchical
systems.54–56 Nevertheless, more complex (compositional) search
landscapes would make this both interesting and necessary. Recent
work in the materials design with multiple criteria in mind basically
splits into two approaches. Either one works out an ad hoc scalar
cost function combining the criteria by a set of weights, or searches
for the full Pareto optimal front. As this is a phase space region
identification task, it is like the feasibility space one by necessity a
harder effort.53

In specific practical applications, some atomic species might
have very specific uses,57 which we have not considered here. We
have only considered mechanical properties, ignoring, for example,
thermal conductivity properties. In addition, we have here focused
on a simple random fcc structure. To make the systems more
realistic, one might also explore the effects of short-range order-
ing,58 for example, using swap Monte Carlo methods.59 This would
present another dimension to the search problem via the tendency
of short-range order. One should also experimentally verify the
mechanical properties of the optimal HEAs established here. We
have also not considered the temperature dependence of the optimal
compositions60 here, but just focused on a single temperature of
900 K. Another multiobjective task would naturally be to optimize
the composition in a range of temperatures of interest.

Due to the modular structure of the automated system, further
work using different potentials61–63 for systems differing from the
Cantor-like HEAs would not require major changes to the frame-
work. In addition, changing the utility function to optimize for
something completely different, e.g., the yield stress per price of
the material, is a simple task in the framework. Even replacing the
whole molecular dynamics part with, for example, experimental
results is easy, although the time for each iteration step increases
significantly. Our focus here is in showing a workflow for compo-
sition optimization, not one for automated experiments.
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APPENDIX A: EVOLUTION OF KERNEL
HYPERPARAMETERS

The hyperparameters of the BO algorithm, w, k0, and ℓi, are
optimized during each iteration. This allows us to see how they
evolve with the increasing dataset size (see Fig. 5). Initially, the
white noise w [panel (a)] in the system is zero and k0 [panel (b)]
decreases with increasing dataset size. This means that the BO
algorithm thinks that the correlation between the yield stress values
between points close to each other in the composition space is low,
i.e., the landscape is rugged. However, when areas further from the
equiatomic composition are explored around iteration 20, w and k0
increase, meaning that the BO algorithm considers this correlation
to be higher and the ruggedness of the yield stress landscape to be
just modeled with a white noise type error term. It is noteworthy
that even the highest values of w are significantly lower than the

FIG. 5. Evolution of the hyperparameters corresponding to the (a) prefactor of the
white noise kernel, (b) prefactor of the RBF kernel, and (c) length scales of the
RBF kernel, as a function of the iteration number.

actual variation in the yield stress due to different realizations of the
same composition Δτy = 467 ± 55 kPa. The standard deviation σ(x)
is then mostly given by the RBF kernel—i.e., k0, which has values
significantly higher than Δτy.

Initially, the step sizes of the algorithm are small, so all the
length scales ℓi are bounded close to the Δc = 0.01 value. Around the
same iteration 20 point, they start to increase, once again indicating
that the yield stress landscape is not very rugged after all. The length
scale values keep increasing close to the maximum values (maximum
distance of points in the dataset). The kernel is then fairly isotropic,
the smallest length scale being ℓMn. This is simply due to the
observation that the optimal HEAs are found with very low values
of cMn, so higher values are not explored.

APPENDIX B: EVOLUTION OF ADDITIONAL
QUANTITIES

There is a plethora of quantities one can compute based on
the compositions and the results of the MD simulations. Some of
these are shown in Fig. 6. The vertical lines in this figure indicate the
iterations where a current optimal composition (in terms of yield
stress) has been found.

The expected improvement EI is shown already in Fig. 3, but
the evolution is more clear in logarithmic scale [Fig. 6(a)]. The
expected improvement normalized by the current best yield stress
EI/τy [Fig. 6(b)] shows how the optimization moves toward the
convergence criterion EI/τy ≤ 10−3 and how a different threshold
would change the number of iterations performed by the algorithm.

Another illustration of the search done by the algorithm is
the Euclidean distance from the equiatomic Cantor alloy ∣x − xC∣,
shown in Fig. 6(c). One can see that the algorithm stays close to
the equiatomic composition and, until around iteration 20, starts to
rapidly move away from it. The distance increases, and, until around
iteration 50, it settles into a roughly constant value. This is simply
due to the fact that the compositions explored are at the edge of the
search space.

In this work, we have defined the search space by one definition
of HEAs: all the concentrations being between 5% and 35%.2
One could also define HEAs as alloys having mixing entropy
Smix = −R∑ici ln ci > 1.5R,64 where R is the molar gas constant.
The MEAs would then be defined as alloys with mixing entropies
R ≤ Smix ≤ 1.5R. The evolution of the mixing entropy Smix/R is
shown in Fig. 6(d). During optimization, the mixing entropy of our
alloys decreases to roughly 1.4, putting them into the MEA category.
However, at iteration 24, we are still very close to Smix = 1.5R.

One of the quantities often computed for HEAs is the lattice
distortion parameter,65

δ =

¿

Á
ÁÀ

N

∑

i=1
ci(1 −

ri

∑
N
i=1 ciri

)

2

, (B1)

where ci are the atomic compositions (N = 5) and ri is the corre-
sponding atomic radii. One of the modified Hume-Rothery rules is
that small lattice distortion favors single-phase formation. For the
atomic radii,66 one can take the Goldschmidt radius of each atomic
species [Fig. 6(e)] or the effective radius based on a more realistic
configuration [Fig. 6(f)]. On average, we can see that the δ parameter
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FIG. 6. Evolution of additional parameters: (a) expected improvement, (b)
expected improvement normalized by the current best yield stress, (c) Euclidean
distance from the equiatomic Cantor alloy in the compositional space, (d) the mix-
ing entropy (normalized by the molar gas constant), (e) the δ parameter [Eq. (B1)]
computed using the Goldschmidt radii, and (f) the δ parameter computed using the
effective radii, as a function of the number of iterations.

computed based on the Goldschmidt radii δGoldschmidt decreases with
the iterations (i.e., with increasing yield stress), but the one com-
puted based on the effective radii δeffective slightly increases with the
iterations.

APPENDIX C: EFFECT OF THE SYSTEM SIZE

The stress–strain curves corresponding to the system size
of 1080 atoms for four compositions are shown in Fig. 4. The
stress–strain curves for the same compositions but with system sizes
of 9504 [panel (a)] and 93 840 [panel (b)] atoms are shown in Fig. 7.

The greatest distinction from the smaller systems is that
Fe21Cr20Mn5Co20Ni34 performs better than Fe5Cr30Mn5Co35Ni25.

FIG. 7. Stress–strain curves corresponding to the systems illustrated in Fig. 4, but
for system sizes of (a) 9504 and (b) 93 840 atoms.

The results in terms of yield stress for the equiatomic Cantor and the
best alloy with smaller systems, Fe6Cr22Mn5Co32Ni35, are basically
the same with all system sizes.

In the smallest systems, one can see a large stress drop lasting
around 5% in strain and then a stress increase, but in the systems
with 9504 atoms, the stress drops are quicker and there are several
of them. Finally, in the largest systems, there is a single large stress
drop, and after that, the stress–strain curves look roughly horizontal
implying continuous flow.

APPENDIX D: GOODNESS-OF-FIT

Even using a simple radial basis function kernel, the predic-
tions given by GPR align well with the observed data, as illustrated in
Fig. 8. In the early stages of the optimization [for example, at itera-
tion 28 shown in Fig. 8(a)], the GPR fits the training data well, but the
yield stress at the next simulation point might be strongly underesti-
mated by the GPR, although the GPR does give wide error margins
for the estimate. During the final iterations (around iteration 60
onward), the yield stress starts to be well predicted by the GPR, as
can be seen from Fig. 8(b). This is consistent with the behavior seen
in Fig. 3(a).

FIG. 8. Yield stress obtained from the simulations τy vs the yield stress predicted
by GPR τGPR

y at (a) iteration 28 and (b) iteration 100. The blue points correspond
to the training data, and the orange points correspond to the newest point (test
data).
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