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Abstract 

The increase in the yield stress due to the presence of obstacles to dislocation motion 
such as precipitates is a multiscale phenomenon. The details on the nanoscale 
when an individual dislocation runs into a precipitate play an important role in deter-
mining plasticity on a macroscopic scale. The classical analysis of this phenomenon 
is due to  Bacon, Kocks and Scattergood (BKS) from early 1970’s and has been followed 
by a large body of work both developing the theory and applying it to real experi-
ments and their understanding. Beyond the microscopic details the next level of com-
plexity is met in the micrometer scale when the physics of the yielding and the yield 
stress depend on two mechanisms: the dislocation-precipitate interaction, and the col-
lective dynamics of the whole ensemble of dislocations in the volume. In this review 
we discuss the BKS relation and collective dislocation dynamics in precipitation-hard-
ened crystals in the light of recent research, including large-scale discrete dislocation 
dynamics simulations, statistical physics ideas, and machine learning developments.
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Introduction
On the occasion of Professor Nasr Ghoniem’s retirement, it is appropriate to remind 
ourselves of what we have learned about his research field – the mechanics and physics 
of defects in crystals – during the last couple of decades. One key problem where Prof. 
Ghoniem has made important contributions is that of dislocations in crystals interacting 
with precipitates (Takahashi and Ghoniem 2008). Precipitate strengthening is an impor-
tant mechanism allowing one to design alloys with desirable strength characteristics. It 
is based on the second phase precipitates in the alloy’s matrix acting as obstacles for 
dislocation motion, resulting in significant increases in the yield strength and hardness 
of the alloy.

Here, we’ll present our viewpoint, in the form of a short review, of recent develop-
ments and current trends in this field. We focus especially on the theory and develop-
ment of multiscale computational methods for plasticity of alloys with precipitates, 
as well as on what the resulting multiscale models tell us about the complex nature 
of plasticity in precipitation-hardened crystals on a larger scale. More specifically, on 
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the one hand we discuss “microscopic” theories such as the Bacon-Kocks-Scattergood 
(BKS) relation  (Bacon et  al. 1973) and its various extensions connecting the obsta-
cle hardening to the yield stress, along with numerical tests of these theories, e.g., by 
means of molecular dynamics (MD) simulations in the case of small, nanoscale pre-
cipitates. Typically such studies consider a single dislocation line driven by an applied 
stress through a regular array of precipitates; in MD simulations this is equivalent to 
considering a dislocation interacting with a single precipitate with periodic boundary 
conditions. An important aspect here is the influence of the lattice type. As is well-
known on the atomistic scale Face-Centered Cubic (FCC) and Body-Centered Cubic 
systems have very different features. In the FCC case the dislocation splits into two 
partials and in the BCC one the most important mechanism is thermally activated 
kink propagation.

In general, one can distinguish two well-known mechanisms via which a dislocation 
may overcome a precipitate if the former is driven with a large enough stress, i.e., a stress 
exceeding the critical resolved shear stress (CRSS): Either the dislocation cuts through 
the precipitate by shearing it by a shearing stress τp due to the formation of an antiphase 
boundary, or it overcomes the precipitate via the Orowan looping mechanism. In addi-
tion to this, the physical properties of the precipitate compared to the matrix are impor-
tant (Hu and Curtin 2022, 2021). This includes two effects, elastic misfit for coherent 
precipitates and the mismatch of the elastic constants as discussed below. Finally the 
precipitate is changed by shearing and an atomic surface step is formed. In what fol-
lows, we concentrate on spherical precipitates, as they are the most evident test case 
for the BKS idea. However, there is spectrum of other cases, where the precipitates are 
needle or plate-shaped (Zhang and Sills 2023) or even cubic (Ni-based superalloys). In 
these cases the basic Orowan bow-out mechanism may fundamentally change simply 
due to the geometry of the dislocation-precipitate interaction, and many of the ideas we 
present below for the case of many dislocations interacting among themselves and a pre-
cipitate field might need to be reconsidered.

On the other hand, on a larger scale a large number of dislocations interact not only 
with the randomly positioned precipitates but also with each other via their long-range 
stress fields (the effect of the latter, with the exception of dislocation self-interactions, is 
typically neglected in the BKS type theories). These interactions result in intriguing col-
lective dynamics of dislocations manifested as critical-like features such as power-law 
distributed strain bursts, better captured by larger-scale models such as discrete dislo-
cation dynamics (DDD) simulations; we note that Prof. Ghoniem has played a central 
role in the introduction and development of the DDD method (Amodeo and Ghoniem 
1990a, b; Ghoniem et al. 2000). The DDD codes take all into account the microscopic 
detail (FCC or BCC symmetry or some other, and the resulting character of dislocation 
junctions, interactions, and climb). Then, related to such collective effects, we highlight 
recent DDD simulations including precipitates (which may use parameters obtained 
from MD in the spirit of multi-scale modelling  (Lehtinen et al. 2016)), and how these 
simulations have revealed the manner in which the nature of this critical-like, intermit-
tent deformation process is controlled by the presence or absence of static, or quenched, 
obstacles to dislocation motion (Salmenjoki et al. 2020): The competing effects of dislo-
cation-precipitate and dislocation-dislocation interactions result in collective dislocation 
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dynamics governed by either pinning of dislocations by the precipitates or by dislocation 
jamming, respectively (Ovaska et al. 2015).

Finally, we also briefly highlight recent machine learning (ML) approaches relevant 
for such issues, including, e.g., a confusion algorithm shown to be able to distinguish 
the systems into two separate phases where dislocation dynamics is governed by pin-
ning and jamming, respectively (Salmenjoki et al. 2020.) We discuss also the prospects of 
applying related techniques such as Bayesian optimization to automatically design alloys 
with desirable mechanical properties (Sarvilahti and Laurson 2022).

Collective dislocation dynamics in precipitation hardened crystals
One should note that the BKS theories (to be discussed in more detail later) are essen-
tially single-dislocation descriptions. Real plastically deforming crystals, however, always 
include a large number of dislocations interacting not only with the precipitates but 
also with each other. The usual approach employed in the materials science literature 
to account for this is to employ various rules of mixture to combine contributions from 
different hardening mechanisms, such as precipitate hardening and strain hardening due 
to dislocation-dislocation interactions (Queyreau et al. 2010; Monnet et al. 2011). While 
such approaches tend to be successful in accounting for the resulting material strength, 
the employed rules of mixture are by nature somewhat phenomenological, and do not 
necessarily imply much physical insight as to how the different strengthening mecha-
nisms might be related. This raises the question if there are effects of interest related to 
collective dislocation dynamics that arise due to a large number of dislocations inter-
acting with the time-independent (quenched) pinning field due to a random distribu-
tion of precipitates within the matrix? Indeed, while much of the literature on the effect 
of precipitates for dislocation dynamics in precipitation hardened crystals has focused 
on estimating the CRSS and the ensuing yield stress due to adding precipitates into the 
matrix, typically using single-dislocation descriptions not capturing full complexity due 
to mutual interactions of a large number of dislocations, recently also other, more subtle 
effects due to precipitates have been discovered. These are related to the precise nature 
of critical-like collective dislocation dynamics which gives rise to phenomena such as 
power-law distributed strain bursts in micron-scale crystals and acoustic emission in 
larger samples.

Precipitates in 2D DDD

In order to present the main ideas, we start by discussing recent studies of simple, 
single-slip 2D DDD systems with a quenched pinning field mimicking the effect of 
precipitates  (Ovaska et  al. 2015). While such systems treating dislocation lines as 
point particles (cross sections of straight parallel dislocation lines) are not fully phys-
ical especially in the present context as bending of the dislocation lines due to inter-
action with localized precipitates is not described, these systems nevertheless serve 
as useful minimal models for the study of the relative importance of dislocation-dis-
location and dislocation-precipitate interactions. Concerning the effects of precipi-
tates and other quenched (time-independent) obstacles to dislocation motion on the 
nature of criticality of dislocation dynamics, the picture emerging from recent works 
is that of a competition between two mechanisms of dislocation arrest: jamming of 
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dislocations due to other dislocations (Ispánovity et al. 2014; Miguel et al. 2002), and 
pinning of dislocations by obstacles such as precipitates  (Ovaska et  al. 2015). This 
idea is schematically summarized in  Fig. 1a in the case of a simple 2D DDD model 
with quenched pinning centres, illustrating how the no pinning/weak pinning case is 
expected to be governed by dislocation jamming, while stronger pinning should lead 
to a depinning transition of the dislocation assembly interacting with the quenched 
pinning field created by the obstacles.

In the jamming-dominated regime, the dislocation systems behave similarly to 
glassy systems in that no clear critical value of the external stress can be identified. 
Instead, the system in the thermodynamic limit has been argued to be “critical at 
any stress”. This is evident by considering the time-dependence of the strain rate at 
a fixed external stress which exhibits a power-law decay largely independently of the 
external stress value  (Ispánovity et al. 2011), the exponential increase of the cutoff 
avalanche size s0 with the external stress σext  (Ispánovity et  al. 2014) (rather than 
a power-law divergence at a critical point as in depinning), as well as the observa-
tion that power-law distributed dislocation avalanches can be observed even at zero 
applied stress in response to small localized perturbations (Janićević et al. 2015).

This “glassy” behavior can be contrasted with what happens when the pin-
ning strength is increased from zero such that the dislocation-obstacle interaction 
becomes comparable in strength to the dislocation-dislocation one. The stronger 
pinning breaks down the “generic scale invariance” of the pure dislocation system, 
and results in a transition between pinned and moving phases of the dislocation 
assembly which exhibits the usual characteristics of depinning phase transitions of 
elastic manifolds in random media (Ovaska et al. 2015). For example, the relaxation 
of the strain rate in a dislocation system subject to a constant external stress now 
depends on the stress value such that a temporal power law decay is observed only at 
a specific, critical value of the external stress [see Fig. 1b]. Moreover, the strain burst 
(or “dislocation avalanche”) size distributions are power laws terminated at a cut-
off, with the cutoff scale s0 diverging at the critical external stress value as in stand-
ard depinning phase transitions, i.e., s0 ∝ (σc − σext)

1/σ , where 1/σ ≈ 1.9 is a critical 
exponent [see Fig. 1c and d]. These features - divergent spatial and temporal scales 
at a σc with power-law distributions whose cutoffs in accordance also diverge upon 
approach - are a definition of “true criticality”.

The above scaling picture including glassy jamming of pure dislocation systems 
and depinning criticality for systems with obstacles of “intermediate” strength was 
first discovered in simple 2D DDD simulations  (Ovaska et  al. 2015), but has more 
recently been found also in 3D DDD simulations with flexible dislocation lines 
interacting with spherical precipitates (see below for more details on 3D DDD 
with precipitates)  (Lehtinen et  al. 2016). For the specific case of 2D DDD, it was 
also demonstrated that even stronger pinning results in a third “phase” of disloca-
tion behavior characterized by the lack of collective, critical dislocation dynamics 
as the dislocation-obstacle interactions completely dominates over the dislocation-
dislocation interactions, resulting in exponentially distributed avalanche size distri-
butions (Ovaska et al. 2015). It remains an open question if this phase exists also in 
3D DDD.
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Fig. 1  2D complexity: a Dislocations present a phase diagram (inset), and b exhibit “true” critical behavior 
with a critical stress that scales in scale-free way with the precipitate field. The resulting bursts [size 
distributions shown in (c)] can be scaled as in critical phenomena [a data collapse shown in (d)]. Figure 
reproduced from Ovaska et al. (2015)

Precipitates in 3D DDD

In order to get a more realistic picture of effects of precipitates on collective disloca-
tion dynamics, 3D DDD simulations with precipitates included are necessary, includ-
ing a multiscale modelling step  (Kubin 2013; Monnet 2015). Various approaches to 
include precipitates in 3D DDD have been proposed, of which we here consider our 
recent model  (Lehtinen et  al. 2016) where precipitates are modelled by employing 
a Gaussian potential U = A exp [−(r/R)2] , generating a normal force acting on the 
dislocation segments parameterized by the strength A and radius R of the precipi-
tates, see Fig. 2. For a specific alloy/precipitate, these parameters can be fixed via a 
multiscale handshake of single-dislocation DDD simulations with the corresponding 
molecular dynamics (MD) simulations, by comparing the CRSS and the manner in 
which the dislocation bypasses the precipitate in MD and DDD. One should note that 
this approach leads to an isotropic field, which cannot deal with the size mismatch 
effect, leading to an anisotropic stress field.

Such a handshake was performed for BCC iron with spherical cementite (Fe3 C) pre-
cipitates, of sizes 1 nm, 2 nm, and 4 nm, interacting with an edge dislocation (Lehtinen 
et  al. 2016). Later, this model was applied to study effects of precipitates, together 
with dislocation loops, on the yield stress of irradiated iron with a large number of 
interacting dislocations (Lehtinen et al. 2018). As is obvious from snapshots of these 
simulations (see Fig.  3 for an example), the dislocation line network becomes quite 
complex, especially after finite strains have been reached.
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The Bacon‑Kocks‑Scattergood relation and beyond
Here we take a different, more microscopic viewpoint to dislocation-precipitate 
interactions by considering the BKS relation  (Bacon et  al. 1973), which is an exten-
sion of the formula for the classical Orowan stress for a dislocation driven through 
a regular array of impenetrable spherical obstacles, τOrowan = Gb/L , where G is the 
shear modulus, b the Burgers vector, and L the obstacle spacing. The BKS relation 
is obtained as an extension of the above formula by considering the effect of mutual 
self-interactions of bowing dislocation loops around an obstacle with a finite diam-
eter D. Typically one expects such interactions to reduce the CRSS from that given by 
τOrowan due to the attraction between opposite dislocation segments bowing around 

Fig. 2  Multiscale handshake from MD to DDD: a In the typical test scenario one runs MD simulations of 
the dislocation - precipitate collision and works out how the resulting behavior can be parameterized into 
the DDD simulation. b illustrates what this means in terms of the ParaDis code with precipitates. Figure 
reproduced from Lehtinen et al. (2016)

Fig. 3  An example of the dislocation-precipitate system configuration at a finite strain of 0.68 % in BCC Fe. 
Dislocations (green lines) that have bypassed precipitates (red spheres) have left Orowan loops around some 
of the obstacles. The inset shows a twisted noose where the edge arms of the loops are on different glide 
planes and hence cannot annihilate each other. Figure reproduced from Lehtinen et al. (2018)
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the precipitate. As a result of the self-interactions, the Orowan stress was argued to 
be of the form (Bacon et al. 1973)

where A is either 1/2π for an edge dislocation or 1/2π(1− ν) for a screw dislocation 
( ν is the Poisson’s ratio), B is a constant of the order 1 (about 0.7 based on fitting the 
model predictions with DDD simulations), and D̄ is the harmonic mean of D and L, i.e., 
D̄ = (D−1 + L−1)−1 . Equation (1) has been extended to the case of a random distribu-
tion of spherical impenetrable precipitates  (Bacon et  al. 1973; Santos-Güemes et  al. 
2022),

with 〈L〉 the mean inter-precipitate distance and the constant A in Eq.  (1) is chosen to 
represent a mixture of edge and screw dislocations. An expression similar to Eq.  (2), 
with 〈L〉 within the glide plane estimated from the 3D precipitate number density, was 
shown to reproduce 3D DDD simulation results with spherical precipitates reasonably 
well, assuming a linear rule of mixture of the “pure” system yield stress, due to dislo-
cation jamming, and the strengthening effect due to precipitates (Lehtinen et al. 2018). 
Analogous descriptions of non-spherical (e.g., rod or disc-shaped) impenetrable precipi-
tates have also been proposed (Nie 2003; Nie and Muddle 2008).

The above descriptions are constructed for impenetrable precipitates which the dis-
locations bypass via the Orowan looping mechanism. Shearable point-like precipitates 
have been described with the rather obvious idea that there is a finite maximum force 
that the precipitate can withstand before shearing takes place, which should be related to 
a critical angle θc between the two dislocation “arms” around the precipitate. Employing 
such ideas, Friedel (1964) derived an expression of the form

which was argued to be valid for a random distribution of weak point-like precipitates. 
Effects due to shearable precipitates of a finite size have been modelled, e.g., via the 
introduction of a friction stress acting on the dislocations inside the precipitate (Monnet 
2018), as well as via a simple Gaussian potential modelling the dislocation-precipitate 
interaction (Lehtinen et al. 2016).

More recently, a “generalized” line tension model including the effect of the elastic 
mismatch between the matrix and the precipitates has been proposed (Santos-Güemes 
et al. 2022). Precipitates that are either stiffer or more compliant than the matrix were 
studied, and both shearable and impenetrable precipitates were considered (hence the 
generalized nature of the resulting line tension model). In particular, formulae were 
derived to describe the experimentally relevant case of strengthening due to random 
precipitate distributions. In the case of impenetrable precipitates, the starting point 
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is the BKS equation, Eq.  (2), which was modified by employing averaged geometrical 
descriptors to read

where the average effective distance is given by �Leff� = �L�(1− α�D�/�L�) , and 
�D� = (�D�−1 + �L�−1)−1 is the harmonic average of the mean planar diameter 
�D� = πD/4 and the average inter-precipitate distance �L� = �Lctc� − �D� , where the 
average center-to-center distance between precipitates is �Lctc� = D/2

√

2π/3f  , with f 
the precipitate volume fraction.

The shearable precipitate case requires a different treatment, and the outcome depends 
on details such as the elastic mismatch �G = GP − GM , where GM and GP are the shear 
moduli of the matrix and the precipitate, respectively, and on the friction stress τp . The 
resulting CRSS τsh,rand reads

where Ki are constants that depend on the dislocation character and on whether the pre-
cipitate is stiffer or more compliant than the matrix (Santos-Güemes et al. 2022). Equa-
tion  (5) can also be expressed in terms of the precipitate volume fraction f instead of 
〈D〉/〈Lctc〉 . Equations (4) and (5) were validated via DDD simulations including a random 
distribution of 12 spherical precipitates with very good results, even if the formula for 
impenetrable precipitates, Eq. (4), overestimates slightly the DDD results for screw dis-
locations. It was also found that in agreement with the model predictions, for a fixed 
f and τp the CRSS is (within error bars) independent of the precipitate diameter D for 
shearable precipitates, while it decreases with increasing D for impenetrable precipi-
tates (Santos-Güemes et al. 2022).

BKS in the light of DDD studies

Next we look at attempts to use the BKS theory in more practical cases. Figure 4 shows 
this in two cases, where multi-dislocation DDD simulations with spherical precipitates 
included are considered. For Fe (BCC) and two different precipitate sizes the density of 
precipitates is varied (Lehtinen et al. 2018). Thus the typical precipitate distance changes, 
and the data allows reasonable BKS-style fits. The Al (FCC) case is more interesting. The 
question here is a more accurate one, since from other simulations for the same system 
we know that the yielding is characterized by two regimes: one where dislocation-dislo-
cation interactions dominate, so that the precipitates are a perturbation, and one where 
dislocation-precipitates interactions rule (Salmenjoki et al. 2020). Even though there is a 
transition at some precipitate density (Ovaska et al. 2015) nevertheless a BKS fit may be 
applied. The inset of the figure demonstrates that there is an effective renormalization 
of the scales: how close the dislocations are to precipitates is a self-organized process. It 
can be fit from the simulations. Notice that in the systems with multiple interacting dis-
location considered here, the fits also include the pure system yield stress as a constant, 
an addition to the single-dislocation BKS formula.
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Fig. 4  Two examples of how the BKS relation can be used to fit DDD data. a The case of a BCC metal (Fe, 
figure reproduced from Lehtinen et al. (2018)). b FCC (Al, figure reproduced from Salmenjoki et al. (2020)). 
The inset of (b) illustrates how it is crucial how the dislocations (here, edge dislocations) explore their 
neighborhood and that the true precipitate-dislocation interaction shall depend on the strength of the 
microscopic repulsion, but also on the geometry including the presence of other dislocations

Fig. 5  a and b The BKS relation (Santos-Güemes et al. 2022) and assumptions about how random precipitate 
geometries influence the yield stress results in concrete predictions about the yield stress. c Likewise, the 
DDD results can be parameterized to show how “to design materials” by controlling the precipitate volume 
fraction in the system

We finally point out how the BKS theory can be used for “material design”. One can 
either lean on the theory itself and by using precipitate-related parameters such as the 
precipitate elastic modulus ( GP ) and shearability ( τP ) consider the impact of the precipi-
tates on strengthening (Santos-Güemes et al. 2022). As in Fig. 4, we see here in Fig. 5a 
and b that quite large improvements are possible within the necessary assumptions and 
that they depend on the precipitate properties. In particular the prediction is that in 
general the yield stress is improved, and that more tough precipitates (measured by τP ) 
lead to a bigger increase. Figure  5c shows a (non-linear, actually) relation of the yield 
stress to the precipitate volume (applying the results of Lehtinen et al. (2018)) for 10 nm 
size precipitates.

Collective phenomena in 3D DDD with precipitates
Now that we have discussed the 3D DDD method with precipitates, it is time to examine 
to what extent the picture of collective dislocation dynamics emerging from the com-
petition between dislocation jamming and pinning due to precipitates, outlined above 
for the 2D DDD case, is applicable in 3D DDD. To this end, we’ll discuss the recent 3D 
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DDD simulation study with precipitates included  (Salmenjoki et  al. 2020), and com-
pare the findings with earlier simulations of a similar system where precipitates were 
absent  (Lehtinen et  al. 2016). First of all, we note again that from the 2D modelling 
(Ovaska et  al. 2015) we know that it is expected that there are two phases as long as 
the dislocations interact: the no/low disorder phase where as above noted the precipi-
tates act essentially as a perturbation. In this case, the avalanche picture may be called 
“extended criticality”: the burst size distributions appear scale-free from zero stress on, 
but no critical point (in stress/strain) exists such that the cut-off would diverge there. 
We note that the above-mentioned papers consider the avalanche-like response of the 
dislocation systems to quasistatically increasing external stress, and that imposing a high 
enough deformation rate has been shown to result in an intermittent-to-smooth transi-
tion (Sparks et al. 2019). Also, the 3D DDD simulations discussed below are performed 
for fcc crystals; on the other hand, for bcc Nb, the long-range and scale-free dynamics 
at room temperature has recently been shown to get progressively quenched out with 
decreasing temperature  (Rizzardi et al. 2022), highlighting the temperature-dependent 
nature of bcc plasticity. Moreover, the simulations reported below consider the rather 
minimal description of the precipitates via the Gaussian potential, such that, e.g., the 
elastic stress fields of the precipitates which could be computed from Eshelby’s inclusion 
theory are not included (Ringdalen et al. 2017).

Figure  6a from Ref. (Salmenjoki et  al. 2020) illustrates the difference between these 
phases. DDD simulations of creep relaxation indicate that precipitate pinning acceler-
ates the decay of the creep rate and in particular, that the power-law (“primary creep”) 
exponent depends on the parameters. In the weak disorder phase, it is close to 0.3, but 
above a threshold (e.g., in precipitate density) starts to increase. Likewise [Fig. 6b] these 
effects are accompanied by an increase in dislocation density, and the forest harden-
ing this implies creates an internal degree of freedom, that must be at least partly the 
cause for the varying exponent. We have also addressed the problem as to whether the 
two phases can be identified already in the relaxed dislocation structures at zero stress 
(Salmenjoki et al. 2020). It turns out that dislocation configurations are correlated with 
the precipitate density (or the strength of interaction with those) and these correlations 
match with the resulting response, that is creep behavior.

Figure 6c and d show finally, that for a high enough density of strong enough precipitates 
the yield stress is in fact a critical point. The usual picture of a data collapse of the distribu-
tions P(s, σ) as a function to the critical stress σc as at a depinning transition works well. 
The avalanche size exponent that results here (for two cases only) is about 1.25-1.3. To 
complete the picture, the σc value found by these simulations of stress-strain curves by a 
quasi-static ramp agrees well with what can be determined by creep studies, where a pure 
power-law response emerges at the critical point (whereas below that there is a transition 
to exponential decay, and above the system reaches a state of constant flow). When look-
ing at correlations between subsequent events along the stress-strain curve, the presence 
of precipitates has been shown to lead to another signature of a depinning phase transi-
tion: the correlations between subsequent avalanches tend to push the stress-strain curves 
towards the average curve at large strains (i.e., close to σ = σc ), while for “pure” samples 
such correlations were observed in the small strain region (Salmenjoki et al. 2021).
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Discussion and conclusions
Based on the above, it is evident that there are two main theoretical/numerical 
approaches to study the effects of precipitates on plastic deformation mediated by dislo-
cation motion in crystals: (i) BKS-type theories (and related MD and DDD simulations) 
addressing in detail the magnitude of the CRSS and the microscopic mechanisms via 
which individual dislocations overcome precipitates, and (ii) larger scale multi-disloca-
tion modelling of plasticity of precipitation-hardened crystals describing the collective 
dynamics of a large number of interacting dislocations. Here, we have highlighted some 
key aspects of both approaches.

To summarize, we started by illustrating the formation of a “true critical point” by the 
example of 2D DDD, by the addition of pinning points such as precipitates. For the 3D 
case, the FCC case reproduces this but leaves open a number of questions: what hap-
pens for BCC which has not been looked at in detail. Our own work presented above did 
not consider the yield strength or avalanche behavior from the depinning perspective. 
Our main point in the FCC case that has been resolved is that the depinning is more 
complex than that of individual dislocations interacting with disorder (Geslin 2024) and 
with a hint of lack of universality as the pinning strength due to precipitates changes the 
creep exponent. For low disorder, what is observed is a slightly increased yield stress 
but otherwise the dislocation system seems to not qualitatively change even though 

Fig. 6  The collective phenomena in 3D DDD simulations when the precipitates dominate the physics of 
the yielding can be seen both in creep modelling and in shear-tests. a illustrates how the power-law creep 
becomes quite complex: the decay of the strain rate exhibits a power-law exponent that varies with the 
strength of the precipitate-dislocation interaction. b shows how the dislocation density increases during 
creep. In c we illustrate the fact that a true “critical point” of statistical mechanics ensues such that the 
approach towards the σc and the associated yield strain is accompanied with strain bursts the distribution of 
which (P(s)) follows a data collapse shown in d. This in turn indicates an increasing correlation length. Figure 
reproduced from Salmenjoki et al. (2020)
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the similitude principle does not apply due to the length scale from precipitate density. 
These two regimes, with and without collective depinning, lead to the question whether 
a rule of mixture could be found to describe the alloy yield stress, as we discuss below.

Our take is that a key challenge worth future research efforts in this field has to do with 
integrating the two levels of description mentioned above. One may ask for instance a 
question of immense practical relevance: how to compute the yield stress of a precipita-
tion-hardened crystal with a large number of interacting dislocations? Above, we have 
presented ideas suggesting that it might be possible to approximate this as a simple sum 
(or some other rule of mixture) of the pure system yield stress due to dislocation jam-
ming and the contribution due to precipitates, with the latter estimated from BKS-type 
theories. However, it is not clear if such a simplistic approach should work in the general 
case. This is because the presence of precipitates affects the structure of the dislocation 
network in the crystal, and hence the “jamming component” of the yield stress might not 
be independent from the “pinning component” due to precipitates.

Another timely issue has to do with a key goal of metallurgy, i.e., designing materi-
als with desirable mechanical properties by tuning the precipitate content of the alloy. 
Here, we have illustrated that BKS-type theories may be used as a theoretical guideline 
in designing materials with suitable strength characteristics. We note that an alternative 
approach is given by black box optimization algorithms such as Bayesian optimization, 
which can be exploited, e.g., to find optimal precipitate size distributions (optimizing a 
given mechanical property of interest), subject to the constraint of a fixed precipitate 
volume fraction (Sarvilahti and Laurson 2022). Overall, machine learning and data sci-
ence approaches show great promise in the study of the plastic deformation (Salmenjoki 
et al. 2018; Mińkowski et al. 2022; Mińkowski and Laurson 2023) in a wide range of con-
texts, e.g., on the granular level in polycrystalline alloys (Salmenjoki et al. 2023), suggest-
ing that machine learning can assist in optimising material properties across the scales, 
ranging from microscopic interactions of dislocations with individual point defects to 
granular and microstructural properties to achieve desired material properties.

From a more theoretical point of view, one may also outline several open questions 
that have to do with understanding phenomena such as the statistics of strain bursts - a 
key manifestation of collective dynamics of dislocations in plastically deforming crystals. 
In crystals with precipitates or other obstacles to dislocation motion of varying strength 
and density, one may envisage a number of different scenarios for critical-like disloca-
tion dynamics. Above, we already discussed the pinning dominated case of the disloca-
tion ensemble interacting with precipitates, and contrasted that to dislocation jamming 
occurring in “pure” dislocation systems without precipitates. We pointed out the pos-
sibility of critical exponents that vary continuously, as seen in the precipitate dominated 
case for the creep (or order parameter relaxation, in the depinning language) exponent. 
In addition, in a system of low dislocation density and high precipitate density, (de)pin-
ning of individual dislocation lines might become the dominating mechanism. More-
over, in 2D DDD simulations it was found that very strong pinning disorder might 
completely quench critical behaviour. It remains to be seen if this is observable also in 
3D systems. Finally, the crossovers between these different regimes of avalanche-like dis-
location plasticity remain to be properly characterized.
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