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Abstract

A comprehensive study of the size effects in the spherical indentation test of a copper
single crystal is carried out. The main novelty of the approach is the analysis of a wide
spectrum of parameters measured in the test that are predicted by the proposed model,
and the prediction is verified experimentally for six different tip radii. Load-penetration
depth curves, nominal hardness, pile-up and sink-in profiles, and the rotation and ro-
tation gradient of the crystallographic lattice in the cross-section beneath the indenter
have been measured and also calculated using 3D finite element simulations on the micro-
and nanometer scale. Two gradient-effects are examined numerically within the Cosserat
elastoplasticity framework with the gradient-enhanced hardening law. It is shown that a
good prediction of the experimentally observed size effect on nominal hardness is achieved
using the conventional power-hardening law, calibrated from the standard uniaxial com-
pression test, enhanced with a term dependent on the lattice spin gradient term with no
adjustable parameter. Furthermore, it has been found that the observed distribution of
lattice rotation and decrease in the rotation magnitude with decreasing indenter radius
can be qualitatively modelled by adjusting the coefficient of accumulated lattice curvature
energy within the same framework.

Keywords: Hardness, Metals, Dislocations, Lattice rotation, Plasticity, Strain gradient,
Nanoindentation

1. Introduction

The progress of modern technologies, like micro-forming or development of micro-
electro-mechanical systems (MEMS), requires a better understanding of the behaviour
of metallic materials at different scales. It is known that the deformation resistance of
a material in the elastic-plastic state depends on the deformed volume or sample size.
This topic was discussed extensively by Zhu et al. [1]. Two categories of size effect were
distinguished: the intrinsic, which is an effect of microstructural constraints, and the
extrinsic, resulting from dimensional constraints (e.g. sample size). The authors have
classified indentation size effect (ISE) as the extrinsic size effect with three-dimensional
constraints. However, the classification is more complex, since even for single crystals the
hardness depends on both: the plastic strain gradient induced by the tip geometry and
the effect of existing defect structures in the tested material [2].

A relatively simple indentation test can be carried out on a variety of scales as different
amounts of material are involved in the test depending on the tip applied and the depth
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of penetration. The material response in such tests is known as the indentation size effect
(ISE). As reviewed below, ISE has been investigated experimentally and numerically
in numerous studies, but has not been yet sufficiently explored. Using the indentation
and micro-pillar compression tests, Nix et al. [3] have shown the different mechanisms
that are responsible on ISE, that is geometrically necessary dislocations (GNDs) at the
micrometer scale, and dislocation starvation and nucleation at the nanometer scale. A
valuable overview of ISE was provided by Pharr et al. [4].

The indentation size effect was basically modelled in relation to the increase of hardness
with decreasing extrinsic length scale as in the well-known Nix-Gao model [5], which
explains this behaviour by the material hardening due to the presence of GNDs. These
dislocations are required to accommodate plastic strain gradients generated by indenter
within the crystal. The model introduced a material length scale and was applied by
many authors e.g. [6, 7, 8, 9, 10, 11, 12]. The Nix-Gao model was modified as in [13, 14]
and extended to the isotropic, 3D, ‘mechanism-based’ model in FEM approach in which
strain gradient was taken into account [15, 16]. The mechanism-based strain gradient
crystal plasticity was applied to simulate ISE in FCC single crystal by Lee et al. [17].
In the model, the slip resistance of each slip system was modified due to density of
GNDs, accordingly to intrinsic length scale coefficient. The indentation tests with conical
and Berkovich tips were simulated and pile-up/sink-in pattern was taken into account in
calculation of hardness. The comparison with experimental results published elsewhere
was shown.

Validation of ISE models was initially limited to comparison of hardness values ob-
tained from simulation and experiment e.g. [6, 7, 8, 9, 18]. The experimental values of
hardness were usually determined without account for the complex shape of residual im-
pressions resulting from the material anisotropy. In only a few papers, e.g. [19, 20, 21, 22]
the contact area required for hardness calculation was estimated by measuring the resid-
ual imprint. Additionally, hardness was frequently the only quantity used to calibrate
the model parameters. In few works, e.g. [23, 24], both hardness and GND density be-
neath the indent were estimated experimentally in order to confirm the predictions of the
Nix-Gao model.

The models of crystal plasticity (referred to as CP), which take into account the
anisotropy of single crystals, were used to model the indentation tests, although rarely
with a strain-gradient enhancement (SGCP) to model ISE. They allowed insight into the
deformation mechanisms of single crystals, which were examined using the indentation
test. Thus, not only hardness but also other modelling results can be verified experimen-
tally.

In the works discussed in the next paragraphs, the surface topography around the
residual imprint and/or the lattice rotations beneath it were analysed and compared with
experimental data. As commented below, on the basis of lattice rotation the density
of GND was determined both in the experiment and in the simulation. However, the
agreement between theoretical and experimental results was not satisfactory, even in those
works where the size effect was not considered (this approach was presented in most of
the papers cited). Other published papers also have certain limitations indicated below,
which motivated this attempt at more comprehensive study.

The pile-up patterns and misorientation distributions around indents made with sphero-
conical tip on the sample surface were simulated by Wang et al. [25] using CP model
(without size effect) for a copper single crystals with three crystallographic orientations.
Only one level of load was taken into account and an experimental verification was limited
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to comparison of contour plots of pile-up patterns. The lattice orientation below sphero-
conical indent in the [111] oriented copper single crystal was investigated experimentally
(EBSD in serial sections) and numerically (CP) by Zafaraani et al. [26]. The lattice rota-
tions determined in experiments were smaller and show more complex patterns than those
obtained in simulations; the changes of rotation fields in the experiment were more rapid.
In the simulations, the largest rotations were observed in outer tangent zone, while in the
inner zone, close to the indenter axis the rotation were smaller. Other simulation results
like pile-up patterns or P − h curves were not analysed. The load-penetration depth
curves and topography of residual impression (pile-up patterns) obtained in expe,riments
and in numerical simulations (CP model) were compared, e.g., in [27], [28] and [29].

The mechanically affected zone produced by scratch, impact and indentation tests
conducted at macro-scale with a spherical tip or radius R = 1.25 mm in a copper single
crystal was investigated by Juran et al. [30]. The lattice misorientations over the cross-
section beneath the indent measured by EBSD and simulated numerically (CP model)
were compared. The maximum misorientation values resulting from simulation and ex-
periment were similar, but in the simulation the zone of large misorientation was more
extended. The authors stated that a verification of the CP models can be performed on
the basis of comparison of the load-penetration depth curve and lattice misorientation.
However, the load-penetration curves and pile-up patterns were not provided.

Less numerous are the works in which SGCP model was applied to simulate spher-
ical nanoindentation test. In the paper [31] the spherical nanoindentation in a copper
single crystal was analysed experimentally and numerically (SGCP model). The maps
of residual impressions, lattice rotation fields as well as GND densities beneath the in-
dents obtained in the experiments and simulations were compared but the agreement was
rather qualitative. In contrast, the simulated and experimental P − h curves were very
similar. Only one level of penetration depth (h/R = 0.02) and two tip radii (7.4 µm and
27 µm) were analysed. The authors concluded that the size effect cannot be explained
by the hardening which results only from evolution of GND density and other hardening
mechanisms should be taken into account (e.g. dislocation source activation).

The lattice rotation and pile-up pattern generated by nanoindentation in β-Ti alloy
with a bcc structure was investigated numerically by Demiral et al. [32]. The 3D crystal
plasticity finite element model with account for strain gradient was applied. Although
sphero-conical tip with 1µm radius was used, only spherical part was involved in the
indentation (h/R = 0.3). It was shown that there is a correlation between lattice rotations
and pile-up profiles, and that the high strain gradient is not necessarily associated with
the lattice rotations. The effect of strain gradient on lattice rotations, GND density
and pile-up pattern was discussed. However, the comparison of numerical results with
experiment was limited to one pile-up profile and the agreement was rather poor, and the
P − h curves were not provided.

Load penetration curves and pile-up patterns produced in nanoindentation tests car-
ried out with sphero-conical tip (R = 5 µm) on ARMCO iron under different loads were
analysed by Engels et.al. [33]. The numerical simulation of the tests was performed using
SGCP model. A satisfactory agreement of simulation results and experimental data was
achieved for load-penetration curves, however for the pile-up profiles and hardness the
consistency was much worse. The lattice rotations were not discussed.

The relationship between ISE and lattice rotations in a copper single crystal was
investigated numerically by Gao et al. [34] using SGCP model. It was found that the
lattice rotations depend on the crystallographic orientation, activated slip systems, the
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indenter shape and the h/R ratio, but they are insensitive to the strain gradients. The
latter influence the hardness and thus ISE. In the simulation of indentation tests four
spherical tips (R = 10, 15, 20, 100 µm) were applied, but a very low penetration depth
was assumed (h/R = 0.008). The experimental verification presented was very limited,
only P−h curves and lattice rotations for the greatest radius (R = 100 µm) were compared
with experimental data.

Purely experimental investigations of the lattice rotations below and around indents
made by sphero-conical tip (R = 1µm) in the copper single crystal was presented by
Demir et al., [24]. The GND densities below and around the indents were calculated on
the basis of the orientation changes captured using EBSD in different cross-sections of
the residual impressions. Four levels of indentation depth were applied to observe size
effect. It was noted that GND density does not increase with the decrease of penetration
depth and the increase of hardness. The authors conclude, that GND density does not
directly contribute to the increase of hardness, and the latter is caused by the reduction
in free dislocation segment length (limitation of dislocation sources) associated with the
presence of GND. These non-conventional conclusions may be due to the fact that the
authors applied a load range which is not typical neither for spherical nor for conical
tips, i.e. h/R varies between 0.46 and 1.23. Therefore some of the examined indents
correspond to a deep spherical indentation test and others correspond to shallow quasi-
sharp indentation test, and these two types of tests require a different approach to study
ISE.

Sharp indentation tests (e.g., Berkovich tip) are only briefly discussed here because
the present study is focused on spherical tips. It should be noted that using SGCP to
model ISE with a sharp tip is more challenging than with the spherical tip as there are
significantly greater stress and strain gradients. The lattice rotations for Berkovich tip
were examined experimentally in series of papers by Rester et al. [35, 36, 37]. It was
concluded that for the lowest loads the orientation changes are very small and disloca-
tion sources are responsible on the hardness. At the highest loads, a fragmentation of
misorientation patterns in the substructures was observed, which is responsible for the
hardness decrease, the latter being a manifestation of ISE. The pile-up patterns and/or
load-penetration curves, lattice rotation fields obtained from the simulations and experi-
ments with Berkovich tip were compared in several works e.g. [38, 39, 40]. However, in
the simulations the CP model without strain gradient enhancement was used, and the ex-
periments were performed for one level of load, so the ISE was practically not considered.
In experimental work by Wilkinson et al. [41], elastic strain, lattice rotations and GND
distributions on the free surface around 500 nm deep Berkovich indents in coarse-grained
Fe were determined. In [42, 43] the SGCP model was applied for Berkovich test, but the
simulation results were limited to pile-up patterns or lattice rotations presented for one
load level, and only the P − h curves and/or hardness were compared with experimental
data. A comprehensive study of ISE captured with Berkovich tip with the simulation of
indentation test for different depths has not been found by the present authors.

An extensive study of ISE in wedge indentation (2D) was presented by Lewandowski
and Stupkiewicz [44], using the ‘minimal’ gradient enhancement of CP by slip-rate gra-
dients proposed in [45] and described below. The authors numerically determined the
lattice rotations, load-penetration depth curves and GND densities for different penetra-
tion depths. All major features of the experimental response obtained without ISE in
[46, 47] were very well reproduced, but no experimental data was found to compare ISE.

Generally, 3D FEM simulations of indentation tests using gradient-enhanced crystal-
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plasticity as reviewed above are still scarce in the available literature. The above review
shows also, that the sufficiency of existing CP models (with and without gradient en-
hancement) has not been sufficiently examined. Even if the agreement of experimental
and theoretical results such as lattice rotation, pile-up patterns and GND densities was
observed, it was achieved only at a certain load or for a certain tip radius and usually has
a qualitative rather than a quantitative character. In particular, this is more evident for
gradient-enhanced models.

Recently, it was shown [48, 49] that the size-dependence of hardness in spherical in-
dentation tests on anisotropic Cu single crystals can be predicted by 3D finite element
simulations using the ‘minimal’ gradient enhancement of crystal plasticity proposed by
Petryk and Stupkiewicz [45], where an evolving length scale is fully determined through
standard parameters of a non-gradient hardening law. This length scale, related to the
slip-rate gradient effect on crystal hardening, differs substantially from that in the Nix-
Gao model [5] and has a physical interpretation through its relation to the dislocation
mean free path. The benefit of this approach was also used in this work.

This article presents a combined experimental and numerical study of size effects
in indentation tests performed in a Cu single crystal with spherical indenters of vari-
ous radii. Besides the usually observed increase in hardness with decreased size of the
plastic zone, the deformed surface topography around the indent and lattice rotations be-
neath the indent are also investigated. Experimental techniques such as the atomic force
microscopy (AFM), electron backscatter diffraction (EBSD) and transmission Kikuchi
diffraction (TKD) were used to generate the results compared with numerical predictions
obtained by the finite element method (FEM) using a model of gradient-enhanced crystal
plasticity.

We follow the recent paper [49] where a relatively simple but effective numerical tool
was proposed incorporating simultaneously two gradient-effects of (i) the gradient of the
accumulated lattice rotation and (ii) the local incompatibility of the rate of plastic defor-
mation. Effect (i) includes the Cosserat couple stresses and is responsible for kinematic
hardening, and (ii) includes the enhancement of the hardening law by the PS-term respon-
sible for extra isotropic hardening due to the local incompatibility of the rate of plastic
deformation [45]. However, in distinction to that study we use here a power-hardening
law that was fully calibrated using the stress-strain curve from the uniaxial compression
test. The model is described below in Section 3, preceded by description in Section 2 of
the experimental methods used. To verify the model, a number of quantities are com-
pared with those measured directly in the experiment, i.e. load-penetration depth curves,
nominal hardness, lattice rotations and surface pile-up/sink-in patterns (Section 4). The
experiments were performed for a wide range of tip radii (1.75 ÷ 250 µm) and relatively
large penetration depth (h/R ≈ 0.11).

2. Experimental methods

In this section, sample preparation and selected parameters of micro- and nano-scale
indentation tests are presented. The most important technical parameters of the test
equipment are also specified. A complex procedure of sectioning samples for EBSD mea-
surements is described. Some exemplary results are provided.
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2.1. Nano- and micro-indentation

2.1.1. Spherical indentation tests

In the spherical indentation tests the (001)-oriented, high-purity (99.9999 %) copper
single crystal samples were examined. The material was produced by MaTecK GmbH
(Germany) using the Czochralski method. The samples (10×10×5 mm) were cut by wire
saw, and then mechanically polished. The latter generates usually a thin hardened layer,
which we removed by subsequent electro-polishing. Next, the samples were cleaned with
distilled water and isopropyl alcohol and finally the polishing quality was checked by ultra-
low force nanoindentation test. The procedure (electro-polishing and nanoindentation)
was repeated until the residual penetration depth did not change in the subsequent steps,
(Table 1). The effect of surface preparation can also be estimated by analysing indentation
curves. The numerous pop-in events that occur during the tests (especially with spherical
tips) and good repeatability, indicate a low defect density. After electro-polishing, Ra

(roughness parameter) was equal to approximately 1 nm.

Table 1: Stages of electro-polishing.

residual penetration depth [nm]
(for R = 1.75 µm, P = 1.6 mN)

number of electro-polishing process

140 1
160 2
180 3
180 4

In the micro- and nano-indentation tests, the spherical tips with different radii were
applied : R = 1.75 µm, R = 50 µm (diamond), R = 5.9 µm, R = 9.2 µm, R =
110 µm (sapphire), R = 250 µm (tungsten carbide). The indentation tests were performed
using the Anton Paar (previously CSM) MHT (micro) and UNHT (nano) testers (Open
Platform equipment). At the micro-scale (tip radii 50 µm, 110 µm and 250 µm) the MHT
micro-indenter, with the displacement resolution of 0.3 nm and load resolution of 100 µN,
was used.

It is worth noting that the CSM/Anton Paar experimental device is equipped with an
additional reference tip (or so-called reference fork for the micro-scale) that touches with
small force the indented surface during the indentation. Therefore the indenter displace-
ment is measured with respect to the non-deformed region of sample surface located far
from the residual impression. This system considerably diminishes the frame compliance
which can be attributed to the uncontrolled deflection of the indenter shaft rather than
to the deflection of the specimen mount or the loading frame. The instrument exhibits
also an extremely low thermal drift (0.0083 nm/s), which was practically negligible in
our measurements. The frame compliance was calculated individually for each tip on the
basis of the difference between the actual load-penetration depth (P -h) curve and the
Hertz solution for spherical indentation in fused silica [50]. The calculated values were
approximately 1.2-2.3 nm/mN and 0.04-0.07 nm/mN for nano- and micro-indentation, re-
spectively. The load-controlled tests in quasi static regime were carried out. The duration
of loading and unloading was 120 s and 60 s, respectively, with 2 s hold time. The assumed
contact force was 0.005–0.01 mN at the nano-scale and 5 mN at the micro-scale.

To verify the repeatability of the tests, they were repeated several times, for each tip
and level of load. The scatter of results was rather low, however, the different levels of
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loads corresponding to the pop-in events were observed, and the number of the latter
decreased with the increase of tip radius. This indicates that the examined single crystal
is not perfectly homogeneous, that is, the density of existing dislocations may be different
in different locations. The dependence of pop-in events on the presence of defects in single
crystals has been analysed in numerous papers, e.g. [51], [52].

The examined single crystal was not completely homogeneous, which manifested itself
through a different slope of the loading curves (after pop-in) at different indentation
points (areas). We supposed that the somewhat greater slope of some P-h curves was
due to higher strain-hardening and corresponded to a local higher density of pre-existing
dislocations. In order to avoid the interplay of local differences in strain hardening and the
size effect, a small number of P-h curves with distinctly higher slope have been neglected
for each tip radius. Therefore, when investigating the size effect with different tips, we
took into account the results obtained in regions with similar densities of pre-existing
dislocations.

Figure 1: Exemplary result: Load-penetration depth curves for R = 5.9 µm and R = 9.2 µm tips (raw
data from the indenter). After numerous pop-in events at different loads and at different locations, the
curves return to the same slope for each tip.

2.1.2. Calibration of tip radii

The correct calibration of tip radius is a fundamental issue in the spherical indentation
test. At the micro scale the radii of tips (R = 50 µm, 110 µm and 250 µm) were measured
directly with scanning profilometer that guarantees a sufficient accuracy. At the nano-
scale, the indentation test in fused silica is usually applied to determine tip radius, however
in this test the penetration depth is limited. Therefore, for greater penetration depths, we
measured residual impressions in the investigated copper single crystal. The latter exhibits
low elastic recovery (high elastic modulus to yield limit ratio), and one can assume that
at large load the radius of the residual impression is very close to that of the tip. The
details of calibration of the applied tips are presented in [22].

2.1.3. Friction coefficient

The friction coefficient was measured in reciprocating ball on disk test with sapphire
ball with 6 mm diameter sliding on polycrystalline copper. The mean contact pressure at
the beginning of friction, calculated with Hertz equation was 450 MPa. The test duration
was approximately 180 s, since a steady state was established after this time, and the value
of the friction coefficient was about 0.23. The effect of friction on indentation results is
discussed in [53].
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2.2. Measurements of residual impressions

At the micro scale, the 3D topography of residual impressions were measured with the
Hommel-Etamic T8000 Nanoscan scanning profilometer, which has a vertical resolution
less than 1 nm, and resolutions in X and Y direction are 0.1 µm and 0.5 µm, respec-
tively. The radius of tip is equal 2 µm. The optical microscope was also used to capture
the boundary of the smallest residual impressions. The atomic force microscope Nanit
(Nanosurf, Swiss) integrated in the Anton Paar Open Platform device was used to mea-
sure residual impressions at the nano-scale. The maximum scan range (X, Y) is 110 µm,
maximum Z-range 22 µm, and the resolution in Z direction (noise level) - 90 pm. On the
basis of the acquired 3D maps, the profiles of residual impression in arbitrary direction
can be generated.

Figure 2: Exemplary residual imprints at micro and nano-scale: (a) tip radius R = 250 µm; (b) tip
radius R = 5.9 µm. The bottoms of the imprints are cut-off, the 0-height starts at a half of the maximum
penetration depth, to show pile-up patterns more clearly. At the micro-scale, the sink-in is more evident
in the vicinity of the imprint and the dimensions of pile-ups are relatively larger (compared with the
imprint dimension).

2.3. Preparation of cross-sections and misorientation measurements

The cross-sections through the center of indents for EBSD analysis were prepared in
two steps. First, the wire saw with diamond suspension was used in order to initially
cut the specimen in the safe vicinity of the indents (approximately 400 µm from their
centres). Next, the ion milling/polishing system Hitachi IM4000 was used to remove the
material without introducing any deformation up the centre of the indents. The exact
position of the indents centre were previously marked using FIB. In the case of small
indents, i.e. sphere radii 5.9 µm and 1.75 µm for which TKD technique was applied,
the standard procedure of lamellae preparation using FIB thinning/polishing was used.
The lamellae preparation was performed using Hitachi FB-2100 Scanning Ion Microscope.
For both EBSD and TKD techniques the indentation direction as well as normal to the
cross-section were parallel to the ⟨100⟩ type crystallographic direction (see Fig. 3).
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Figure 3: Scheme of cross-section for EBSD and TKD measurements. SEM images of bulk cross-section
for R = 250 µm and lamella for R = 5.9 µm are shown.

The EBSD and TKD analyses were performed using Hitachi SU70 SEM with Oxford
Instruments EBSD system. Depending on the indent radius a step of analysis was set from
1 µm to 10 nm. Main parameters used for both EBSD and TKD analyses are presented
in Table 2. All obtained EBSD and TKD data was analysed using ATEX-software [54].
The GND density was calculated using the approach presented by Pantleon [55].

Table 2: EBSD and TKD parameters for all performed indentation tests.

indentation
direction

sphere radius
[µm]

technique
acceleration
voltage [kV]

sample tilt
[◦]

step [nm]

⟨100⟩ 250 EBSD 20 70 1000
⟨100⟩ 50 EBSD 20 70 200
⟨100⟩ 9.2 EBSD 20 70 100
⟨100⟩ 5.9 TKD 30 30 30
⟨100⟩ 1.75 TKD 30 30 10

2.4. Measurement of strain hardening in uniaxial compression

In order to determine the material parameters required for the numerical simulation
of the indentation tests, the compression test was carried out for the examined copper
single crystal. The samples with dimensions 5 × 5 × 10 mm were cut by spark erosion.
The Instron 5800 universal testing machine was applied in which the specimen fixturing
was modified, i.e. the special compression platens, manufactured from hardened steel,
dedicated to small samples were installed. The compression strain was measured by
extensometer attached to the platens. The strain rate was equal to 0.0005 1/s.
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3. Modelling

This section presents the assumptions and main features of the model used to simulate
ISE. The micropolar elasto-plasticity approach to an anisotropic crystal is combined with
the strain hardening law enhanced by an additional term that reflects the effect of the
lattice spin gradient on the rate of isotropic hardening. The details of the applied finite
element model are provided and a procedure for identification of material parameters is
described.

3.1. Micropolar crystal elasto-plasticity

This part of the model presented in the small-strain format is well known; the reader
is referred to papers by Forest at al. [56, 57] for more details.

As usual in the Cosserat continuum framework, we introduce the displacement u and
the micro-rotation field represented by the infinitesimal rotation vector ϕ. Based on these
two independent kinematic fields two deformation measures are defined, i.e. the relative
deformation tensor e and the curvature tensor κ

e = H + ϵ · ϕ , κ = gradϕ, (1)

where H = gradu denotes displacement gradient and ϵ is the permutation tensor ((ϵ ·
ϕ)ij = ϵijkϕk in the index notation with the summation convention).

The stress tensor σ is associated with e, and the couple-stress tensor m is associated
with κ, both stress measures being non-symmetric in general. In the absence of body
forces, they satisfy the balance equations

divσ = 0, divm− ϵ : σ = 0, (2)

where the colon denotes a double contraction. Accordingly, we have σij,j = 0 and mij,j −
ϵijkσjk = 0. The boundary conditions are

t = σ · n, M = m · n, (3)

where n is the outer unit normal to the domain boundary under consideration where the
traction vector t and couple-stress vector M are prescribed.

Considering the small strain theory of an elastic-plastic Cosserat solid, the relative
deformation measure e is split additively into elastic (□e) and plastic (□p) parts. Assum-
ing that the micro-rotation ϕ contributes only to the elastic deformation one obtains the
following relations

H = He +Hp, e = ee +Hp, ee = He + ϵ · ϕ. (4)

The displacement gradient and its constituents are further split into symmetric (ε□ =
H□

sym) and skew-symmetric (ω□ = H□
skw) parts, so that we have

H = ε+ ω, He = εe + ωe , Hp = εp + ωp, (5)

where Hsym = 1
2
(H +HT), Hskw = 1

2
(H −HT), etc.

The constitutive equations of the elastic response are adopted in the following form

σ = L : ee
sym + 2µce

e
skw, m = 2βκ, (6)
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which corresponds to three terms of the elastic strain energy,

We =
1

2
ee
sym : L : ee

sym , Wpen = µc (e
e
skw)

2 , Wκ = β||κ||2. (7)

Here, L is the fourth-order elastic stiffness tensor possessing the usual minor and ma-
jor symmetries and describing classical elastic anisotropy. Two additional constants of
Cosserat elasticity, µc and β, define the (isotropic) Cosserat part of the elastic response.
Parameter β affects an intrinsic length scale of the micropolar continuum.
As in the conventional crystal plasticity, plastic distortion rate Ḣp reads

Ḣp =
∑
α

γ̇αNα, Nα = sα ⊗mα , sα ·mα = 0 (8)

where γ̇α is the shear rate on the slip system indexed by α, mα the slip-plane normal and
sα the slip direction, ⊗ denotes a tensor product, and sα · mα = 0 is the condition of
plastic incompressibility. The generalized resolved shear stress τα for the α-th slip system
is defined as

τα = σ : Nα = τ symα −Xα, τ symα = σsym : (Nα)sym, Xα = −σskw : (Nα)skw, (9)

where τ symα is the classical resolved shear stress and Xα can be interpreted as a back stress.
From Eq. (2)2, we have σskw = 1

2
ϵ · divm, and it follows that

Xα = −1

2
(sα ×mα) · divm, (10)

where × denotes a vector product. In the rate-independent plasticity, the slip system α
is activated when the corresponding resolved shear stress τα reaches a threshold value, τ cα.
In terms of the following yield functions fα,

fα = |τα| − τ cα = |τ symα − Xα| − τ cα, (11)

the slip-system activity is governed by

fα ≤ 0, (sign τα)γ̇α ≥ 0, fαγ̇α = 0. (12)

In the finite-element implementation below, a viscous regularization of conditions (12) is
used, see Section 3.4.

Lattice rotation ωe = ω−ωp is defined as the difference between the material rotation
ω and the plastic rotation ωp = Hp

skw. From Eq. (4)3, we have

ωe = ee
skw − ϵ · ϕ . (13)

When the penalty parameter µc is sufficiently large, ee
skw must be small, and ωe becomes

close to the Cosserat micro-rotation,

ωe ≈ −ϵ · ϕ. (14)

The well-known dislocation density tensor α is introduced as a measure of the incom-
patibility of plastic or elastic deformation [58],

α = curlHp = − curlHe = − curl εe − curlωe , (curlωe)ij = ϵjkl
∂(ωe)il
∂xk

. (15)
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Neglecting the curl of elastic strain, curl εe ≈ 0, and substituting Eq. (14), the dislocation
density tensor is finally approximated by

α ≈ curl(ϵ · ϕ) = κT − (trκ)1 , (16)

where the last equality follows from the identity: curl(ϵ ·ϕ) = (gradϕ)T − (divϕ)1. The
right-hand expression (16) is known as the Nye tensor [59], where tensor κ is interpreted
as the lattice curvature in view of approximation (14). As shown in [49], this expression
is suitable for finite-element implementation within the Cosserat continuum framework
and, in particular, can be used to effectively implement the gradient-enhanced hardening
law that is discussed in the subsequent section.

3.2. Gradient-enhanced incremental hardening

A simple proposal by Petryk and Stupkiewicz [45] to include the incremental incom-
patibility of plastic flow in the hardening rule has been used and described in several
recent papers, therefore only a brief account is given here. The idea was to enhance the
conventional anisotropic incremental hardening law for a single crystal, expressed in terms
of the slip rates on crystallographic systems, by an extra term dependent on the gradients
of current slip rates, viz.

τ̇ cα = θ
∑
β

qαβ|γ̇β|+ θℓχ̇︸︷︷︸
PS term

, θℓ =
a2µ2b

2τ c
. (17)

In the derivation, the conventional state-dependent hardening moduli hαβ that specify self
(α = β) and latent (α ̸= β) hardening are expressed as hαβ = θqαβ, with θ as an isotropic
hardening modulus. The Taylor formula [60] for the relationship between the isotropic
flow stress τ c and the total dislocation density ρ was used to derive the PS term,

τ c = aµb
√
ρ, (18)

where coefficient a is a given material constant, µ the elastic shear modulus, and b the
Burgers vector modulus. Formula (18) is adopted regardless of the accumulated incom-
patibility of plastic deformation measured by the dislocation density tensor α. As the
next key step, it has been postulated that not ρ itself, but rather its rate ρ̇ is decomposed
into the sum of two scalar density rates of statistically and geometrically induced disloca-
tions. The former obeys the usual multiplication/annihilation law [61] as in the absence
of geometrically induced dislocations, and the latter denoted by (ρ̇)G is related to the rate
of α through

(ρ̇)G =
1

b
χ̇, χ̇ = ∥α̇∥, (19)

where χ̇ is the effective slip-rate gradient, and ∥α̇∥ =
√
α̇ : α̇.

From formula (16) we obtain [49]

χ̇ ≈
√

κ̇ : κ̇+ (tr κ̇)2 . (20)

Importantly, the coefficient θℓ at χ̇ in Eq. (17) and the internal length scale ℓ are ex-
pressed solely in terms of standard quantities of a non-gradient hardening law. Therefore,
no additional assumption is needed to specify the PS term and thus calculate the effect
of current slip-rate gradients on crystal hardening. Moreover, the internal length scale ℓ

12



has a physical interpretation through its relation to the dislocation mean free path λ, and
simply amounts to ℓ = λ in the absence of dislocation annihilation [45]. From Eq. (17)2
it follows that ℓ is not a constant parameter but evolves during the deformation process
as a given function of τ c and θ. Note a substantial difference between ℓ above and the
characteristic length scale in the Nix-Gao model [5]; both are derived using the Taylor
formula (18) but on different routes and in effect are different quantities [45].

3.3. Finite element modelling of spherical indentation test

The implementation of the balance equations in their respective weak forms was similar
to that in [49] and carried out in a displacement-based finite element code. In total,
the formulation requires six degrees of freedom per node, i.e. three displacement and
three micro-rotations. A locking-free hexahedral eight-node element, similar to the one
proposed by Korelc [62], is used in the present work, where both fields are interpolated
with trilinear shape functions. The resulting coupled finite-element equations were solved
monolithically by employing the Newton method.

The implementation and simulation where preformed via AceGen/AceFEM packages
which, together with the symbolic capabilities of Mathematica [63], provide tools for
convenient numerical implementation and for solving computational tasks [64].

The standard Coulomb friction model is used in the frictional contact problem in 3D
indentation, where the indenter is modelled as a rigid sphere and the impenetrability
constraints are enforced using the augmented Lagrangian method. Importantly, it is
assumed that the couple stress vector M in boundary condition (3) vanishes on the
entire free surface, and no additional non-standard contact conditions are imposed.

In this study, numerical simulations were conducted to investigate size effects in the
spherical indentation in a (001)-oriented, high-purity copper (fcc) single crystal. The
simulations were performed for various indenter radii, and the finite element mesh used in
the simulations is displayed in Fig. 4. To exploit the crystal symmetry, the computational
domain was reduced to one quarter with additional constraints on the xy and xz planes.
The normal displacement and ϕx and ϕy micro-rotations were blocked on the xy plane,
while the normal displacement and ϕx and ϕz micro-rotations were blocked on the xz
plane. The total length of the cube side is scaled with the nominal contact radius and it
is set to be 16.8amax where amax =

√
hmax(2R− hmax). The maximum penetration depth

hmax scales with the indenter radius R and it is set to be hmax/R = 0.12. Simulations for
all radii were performed for a constant velocity v = hmax/tmax with tmax = 100 s.
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Figure 4: Finite element mesh of the computational domain (left) and an enlarged detail of the mesh
showing the deformation pattern beneath the indenter (right).

3.4. Identification of material parameters

Most of the parameters for high purity Cu single crystal involved in the proposed
model are standard and can be found in the existing literature, e.g., standard elastic
constants c11 = 170GPa, c12 = 124GPa, c44 = 75GPa for a Cu cubic crystal are taken
after [65, 66]. Parameters that appear in the Taylor formula can be specified based on
the paper [67], i.e. the strengthening coefficient a = 0.33, the Burgers vector modulus
b = 0.256 nm for Cu, and the shear modulus µ is calculated as the one for {111}⟨110⟩ slip
systems, i.e. µ = (c11 − c12 + c44)/3 = 40.3GPa. The initial yield stress for pure copper,
equal for all slip systems, is taken as τ0 = 1MPa, cf. [65, 61].

A three-parameter power hardening law is used which was shown [28] to be useful
in identifying the hardening exponent from pile-up and sink-in profiles without taking
gradient effects into account, i.e.

τ cΓ = C(Γ0 + Γ)n , Γ̇ =
∑
α

|γ̇α|. (21)

The gradient-enhanced hardening law (17) is simplified in the following way: qαβ = 1,
θ = dτ cΓ/dΓ and τ̇ cα = τ̇ c = τ̇ cΓ + θℓ∥α̇∥. This extreme simplification has not been tested
before in the context of ISE.

Three parameters which appear in the above equation, related to material behaviour
in the plastic regime, Γ0 = 0.00035, C = 119MPa and n = 0.6 have been identified
from the [001] uniaxial compression curve (Fig. 5) and verified with indentation test for
R = 250 µm (Fig. 6), hence in the cases where no gradient effects are expected. The
parameters are coupled by the choice of a reference value of Γ for which the graphs
described by Eq. 21 for various n cross each other at a single point [28]. Then, as shown
in Fig. 6(a), the parameter n practically does not affect the load-penetration depth curve
and can be verified by fitting to the experimental surface pile-up and sink-in profiles.
In Fig. 5 it is shown that n = 0.5 ÷ 0.6 corresponds to satisfactory agreement in the
case of uniaxial compression test. In effect, the strain hardening law was fully calibrated
using the stress-strain curve from the uniaxial compression test, while pile-up and sink-in
profiles from the spherical indentation test for R = 250 µm were only used to confirm the
choice n = 0.6.

The Cosserat formulation involves two other, rather non-standard parameters µc and
β. According to Eqs. (7)2 and (13), µc is treated as a penalty parameter and hence must
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be high enough so that the micro-rotation field ϕ be close to the lattice rotation, and
is taken as µc = 10µ = 403 GPa, which was found to satisfy the above requirement (cf.
[49]).

Parameter β plays here two roles, on one hand it provides required regularization,
as explained in detail in [49], and on the other hand it plays an important role in the
modelling of the misorientation angle field as it is discussed in this paper. It was found that
β = 0.03 GPaµm2 gives reasonable values of the misorientation angle for R = 1.75 µm
and at the same time does not disturb too much the macroscopic effect of the PS term
(cf. Sec. 4.4).

Figure 5: Comparison of the experimental (solid line) true stress vs true strain curve for compression
in [001] direction of a pure Cu single crystal with the model. The calculated dashed lines intersect at a
prescribed strain 0.4 and show the numerical results described by the power hardening law (21) for two
values of exponent n.

Figure 6: The influence of hardening exponent n on (a) the load-penetration depth curve, (b) surface pile-
up profiles (along radial direction y = z in Fig. 4), and (c) surface sink-in profile (along radial direction
z = 0 in Fig. 4) upon unloading, for R = 250 µm and the residual penetration depth hres ≈ 0.11R.
Comparison of the experimental and numerical results allows for a satisfactory verification of the choice
of n = 0.6.

The well-known problem of non-uniqueness in the selection of active slip systems is
circumvented here in a rather common way by employing a rate-dependent version of the
crystal plasticity model, which results in the following explicit equation for the plastic
slip rate on each slip system [68],

γ̇α = γ̇0 sign(τα)

(
|τα|
τ cα

)m

. (22)
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In order to ensure that the computational results are close to the rate-independent
response, the two additional parameters which characterize rate sensitivity are set to
γ̇0 = 0.001 s−1 and m = 50.

The material parameters used in numerical simulations are summarized in Table 3.

Table 3: Material parameters for a Cu single crystal used in numerical simulations.

c11 c12 c44 τ0 Γ0 C n γ̇0 m a µ b µc β

[GPa] [GPa] [GPa] [MPa] [–] [MPa] [–] [s−1] [–] [–] [GPa] [nm] [GPa] [GPaµm2]

170 124 75 1 0.00035 119 0.6 0.001 50 0.33 40.3 0.256 403 0.03

4. Results and discussion

In this section, the experimental and simulation results are presented and compared
in order to verify the effectiveness of the proposed model. Variables measured in the
tests performed, such as P-h curves, lattice misorientation distributions, and surface pile-
up and sink-in profiles, are compared with those from the modelling. The results are
discussed along with the effect of changes in selected model parameters on the simulation
results.

4.1. P-h curves – experimental and modelling

The load-penetration depth curves presented in this study, extracted from unpublished
raw data associated with a prior publication [22], offer valuable insight into the size-
dependent material response during spherical indentation. For each tip radius, several
curves have been selected that are closest to the average plot for that tip. In Fig. 7 a
comparison is made between the experimental curves and the numerical results obtained
using the Cosserat crystal plasticity model incorporating the PS term. The numerical
results, represented by the black dashed lines, align remarkably well with the experimental
data beyond the stage of pop-in events as illustrated by the coloured solid lines.

It is worth emphasizing that the computational results for all indenter radii were ob-
tained using the same set of parameters calibrated without taking into account increasing
strain gradients. Hence, the level of agreement between the experimental and computa-
tional results in Fig. 7 may be regarded as highly satisfactory. This confirms the robustness
of the present crystal plasticity model and its ability to accurately predict macroscopic
behaviour in indentation tests. Clearly, the model is unable to describe experimentally
observed pop-in events.
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Figure 7: Load-penetration depth curves measured (solid lines) and calculated (dashed lines) for spherical
indentation in copper single crystal in [001] direction with different tip radii. The clearly different response
shown in Figs. (a)-(f) indicates significant size effects that are correctly predicted by the model in
numerical simulations, despite transient stochastic pop-in events not covered by the deterministic model.

4.2. Misorientation of the crystallographic lattice – experimental

In Fig. 8 the maps of misorientation angle with respect to initial orientation of the
crystals (Euler angles (0,0,0)) for all considered sphere radii R after indentation up to
residual depth hres/R = 0.11± 0.01 are presented. It can be seen that both the distribu-
tions of misorientation angle and their maximal values change when the indenter radius
changes. For the largest sphere radius, directly beneath the imprint, a triangular-shaped
area with a clearly defined low-angle boundary (maximal misorientation angle of approxi-
mately 4 degrees) can be observed. This area becomes increasingly difficult to identify as
the radius decreases. It is also evident that maximal misorientation angle decreases as the
indenter radius decreases. The maximal values of the misorientation angle change from
approximately 23 degrees for indenter radius 250 µm to about 2.5 degrees for 1.75 µm
indenter radius. For all considered radii the maximal values are observed in the vicinity
of the edge of the indents. In the same figure the rotations around x, y and z axes are
shown. The rotation around normal to the cross-section is dominant for all considered
indenter radii. Slightly asymmetric distribution observed for 9.2 µm radius can be a result
of indentation of not perfectly flat surface in this particular case.
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Figure 8: Comparison of misorientation angle distributions and the rotations around x, y and z axes
after indentation to residual depth hres/R = 0.11± 0.01 for sphere radii R from 250 µm to 1.75 µm.

For each sample cross-section analysed with EBSD (Fig. 8), a region was selected in the
form of a narrow rectangle whose length l was much larger than its width s. The rectangles
started in an area where the maximum misorientations occur, and their positions and the
l/R and s/R ratios were the same for all the tip radii used. The exemplary rectangle
marked on the misorientation map corresponding to R = 250 µm is shown in the insert
in Fig. 9. For each EBSD map (i.e. for each tip radius), the mean norm of the Nye
tensor (16) in the selected rectangle was determined. For this purpose, the norm of the
Nye tensor at the points within the rectangle was calculated using ATEX software [54] on
the basis of the previously measured misorientation maps. The mean value was calculated
taking into account all points in the selected area.

Fig. 9 shows the changes of the square root of the mean norm of the Nye tensor
determined as above and of the nominal hardness with respect to the tip radius. The
indentation size effect is manifested by the increase in hardness when the tip radius
decreases. It is observed that the increase of the root of the mean norm of the Nye tensor
with decreasing tip radius is qualitatively similar to the change of hardness. This can
be explained by referring to the Taylor’s formula (18), where the flow stress related to
hardness is proportional to the square root of the total dislocation density, whose growth
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is incrementally affected, according to Eq. (19), by the norm of the Nye tensor increment.

Figure 9: Observed nominal hardness and the root of mean norm of the Nye tensor (in the area selected
on the misorientation map) as a function of tip radius.

4.3. Misorientation of the crystallographic lattice – modelling

In the modelling of size effects in spherical indentation, lattice rotations play a key
role, especially due to their association with lattice curvature and GNDs. As the indenter
penetrates the material, the significance of non-uniform lattice rotations during defor-
mation becomes clear as they directly affect the generation, density, and distribution of
GNDs in the crystal structure. In turn, the appearance of GNDs, which increases the total
dislocation density, significantly influences the mechanical response of the material at the
microscale. Accurate representation of lattice rotations in models is therefore essential
to capture the intricate relationship between size effects and the emergence of GNDs,
enabling a more realistic simulation of the anisotropic nature of deformation.

In the two figures below (Figs. 10 and 11), numerical results of the misorientation
angle distribution are shown for different indenter radii. These pictures can be directly
compared to the first and the last row of the experimental results, respectively, presented
in Fig. 8. It is shown that maximal values as well as distributions change with the value
of the indenter radius. For higher values of the indenter radius (e.g. R = 250 µm or
R = 110 µm, Figs. 10(a) and 10(b)), distributions of the maximum values of rotations
are concentrated near the surface and the maximum values reach 16◦. For smaller radii,
however, the maximum values drop to about 6◦ for the smallest radius, the distribution is
more smoothed out into lower parts of the body (Fig. 10(e)). The above described features
agree at least qualitatively with the experimental data above. It should be emphasized
that such effect of decreasing maximum values of rotation angles with decreasing indenter
radii was achieved by adjusting parameter β related to the Cosserat curvature energy (see
discussion in Section 4.4).
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Figure 10: Misorientation angle in [◦] for different indenter radii R = 1.75− 250 µm. A significant drop
of misorientation angle with decreasing indenter radius R was obtained by adjusting parameter β related
to the curvature energy.

Figure 11: Rotation, ϕz in [◦], around z axis for different indenter radii R = 1.75÷250 µm. As in Fig. 10,
a significant decrease in the rotation angle with decreasing indenter radius R was obtained by adjusting
parameter β related to the curvature energy.

Given that the emergence of GNDs is recognized as a crucial factor contributing to size
effects, accurately predicting their configuration is important. Accumulation of GNDs is
intricately linked to the local misorientation of crystal lattice planes, accommodating the
gradient of plastic deformation and serving as its valuable indicator.

Figure 12 shows, for various indenter radii, the distribution of the norm of the Nye
tensor, (Eq. (16)), closely linked to the gradient of lattice rotation and usually interpreted
as GND density. Remarkably, as depicted in the figure, the maximal density of GNDs
increases with decreasing indenter radius, aligning with the expected behaviour. However,
the increase in the maximal ||α|| is slower than in the reciprocal of the indenter radius
R. This intriguing relationship suggests that the influence of the indenter size on the
distribution of GNDs is more nuanced than a straightforward inverse proportionality.
Understanding the interplay between indenter size and GND distribution, as revealed in
Fig. 12, offers valuable insight into the microscale plastic deformation mechanisms during
spherical indentation.

Figure 12: The norm of the Nye tensor, ||α|| in 1/µm, as the measure of GND density, for different
indenter radii R = 1.75−250 µm. As expected, the maximum GND densities are much higher for smaller
indenter radii.
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4.4. The effect of the coefficient β of lattice curvature energy

In the previous paper [49], it has been shown that the PS term has a crucial in-
fluence on modelling the size effect on hardness in the spherical indentation test, while
the Cosserat model itself, without the PS term involved, is insufficient to predict the
macroscopic size-dependent response correctly. The Cosserat framework was used there
as the regularization tool, and the parameter β was chosen such that not to disrupt the
macroscopic response in a significant way. The value β = 0.0025 GPaµm was found to be
sufficient to provide required regularization. However, for that value of β the numerical
results showed rather weak size-dependence of the micro-rotation field. In this section
it is shown that the adjusted lattice curvature energy through manipulating the param-
eter β can be helpful in modelling size-dependent microstructural features, such as the
misorientation angle.

Fig. 13(a) shows the influence of parameter β on the macroscopic load-penetration
response for tip radius R = 1.75 µm. For small values of β the numerical response
slightly overestimates the load for other material parameters as listed in Table 3. With
increasing β, the curvature κ decreases (so does its rate κ̇) because it is penalized by the
corresponding elastic energy, which results in the smaller macroscopic size effects (cf. [49],
Sec. 6.2). β parameter affects also pile-up and sink-in profiles, as shown in Figs. 13(b)
and 13(c). It can be seen that for higher values of β the pile-ups and sink-ins are slightly
smaller. However, this effect is not sufficient, given the current form of curvature energy
for constant β, for obtaining good agreement with experimental results for tip radius
R = 1.75 µm.

Figure 13: The influence of β parameter on (a) the load-penetration depth curve, (b) surface pile-up
profiles, and (c) sink-in profiles, for R = 1.75 µm. A higher β results in (a) lower loads for the same
penetration depth and a somewhat smaller discrepancy between experiment and simulation for (b) the
surface pile-up profile (along y = z radial direction in Fig. 4) and (c) surface sink-in profile (along z = 0
radial direction in Fig. 4).

The original input of the present modelling is that the appropriate fit of the β pa-
rameter results in a much better prediction of the maximal values and distributions of
the misorientation angle at small scales. In Fig. 14 the misorientation angle distribu-
tions are shown for several values of parameter β. It is shown that for a small value of
β = 0.0025 GPaµm2 the maximum value of misorientation is about 13◦ (Fig. 14(a) and
less only by 3◦ in comparison to that for the largest indenter radius R = 250 µm, and
the distribution is also similar. On the other hand, for the highest considered value of
β = 0.05 the maximum value of misorientation angle reaches about 4◦ (Fig. 14(d), which
is close to the experimental value reported above. Moreover, the distribution is less con-
centrated near the surface and spreads to the lower parts of the body, which is similar to
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the experimental results for small indenter radius.
In Fig. 15, the GND’s distributions, whose measure is defined as the norm of the Nye

tensor, are shown for various values of β parameter. Since the Nye tensor depends on
the gradient of micro-rotation field, its penalization is higher if β is increased. Hence, the
GND’s distribution is less concentrated near the indenter boundary and it is smoothed
out within the crystal. It corresponds also to lower maximum values of the misorientation
angle itself (Fig. 14).

The β effect can be easily explained: If β is increased for given R, the curvature κ (and
hence the gradient of the micro-rotation field) is reduced since it is penalized by the related
elastic curvature energy. Such curvature limitation by increasing β parameter, which
results in smaller maximal values of GND density, may thus have physical interpretation.

In the light of other reports where the authors claim that GND’s alone cannot explain
size effects fully, the most important conclusion from our studies in this section is that
substantial reduction of misorientation angle can be obtained by increasing the value of
parameter β (Fig. 14). This reduction corresponds to much lower maximal values of
the GND density measure for higher β (Fig. 15). Nevertheless, a significant dependence
of GND density magnitude on indenter radius R is also observed for higher β, so that
macroscopic size effects as in Fig. 7 can still be predicted with good accuracy. It is rather
clear that the GND density distribution, misorientation field and sink-in/pile-up profiles
are mutually correlated.

Figure 14: Distributions of misorientation angle, ϕmis [
◦], for different values of parameter β [GPaµm2]

for R = 1.75 µm. For higher β the maximal value of misorientation angle is substantially decreased.

Figure 15: The norm of the Nye tensor, ||α|| in 1/µm, for different values of parameter β for R = 1.75 µm.
With increasing parameter β the maximal values of GND’s are getting smaller, which corresponds to
different GND density distributions and better predictions of the misorientation angle.

4.5. Discussion

As shown in Section 4.1, the agreement between the computational and experimental
load-penetration depth curves beyond the stage of pop-in events may be regarded as highly
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satisfactory. The agreement is even more striking when comparing the size effect on the
resulting nominal hardness, as shown in Fig. 16. This confirms the previous conclusion
[48, 49] that the PS term [45] in the hardening law (17) is itself sufficient to predict the
size-effect on the indentation load accurately, without the use of any fitting parameter.
This conclusion has been found insensitive to other features of the hardening law like the
specific parametrization of the stress-strain curve in uniaxial compression.

Figure 16: Dependence of the nominal hardness, Hnom = Pmax/Anom, where Anom = πhres(2R − hres),
on the residual penetration depth for the ratio hres/R ≈ 0.11.

There is still certain discrepancy in the shape of the residual imprint predicted by
model and measured in the experiment. A satisfactory agreement between the experi-
mental pile-up and sink-in profiles with the results of simulations has been reached for
the power-hardening law with exponent n = 0.6 for a large tip radius R = 250 µm, as
shown in Fig. 17 extracted from Fig. 6. However, for a small tip radius R = 1.75 µm
(Fig. 13), there are visible differences that do not decrease despite adopting different
values of the parameter β of the Cosserat model. This issue requires further study.

Figure 17: Distribution of the indentation depth, normalized by the maximum residual penetration depth
hres, along a radius r in the yz plane in two directions corresponding to the maximum pile-up or sink-in
in the experiment and modelling for R = 250 µm.

Apart from the ISE as above, this paper is mainly focused on the size effect on the
lattice misorientation pattern beneath the spherical indenter, both experimental and the-
oretical. For the purposes of numerical simulations, a more detailed parametric study,
presented in Section 4.4, has been performed to select a possibly optimal value of the
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coefficient β of lattice curvature energy. It has been found that β = 0.03 GPaµm2 makes
the calculated dependence of maximal misorientation on tip radius qualitatively similar
to that in the experiment, and is small enough not to destroy the predictive power of the
PS term for hardness.

Comparing the misorientation distributions obtained from the modelling and experi-
ment, it can be seen that in both cases the maximum value of the misorientation angle
decreases with the decrease of indenter radius. In Fig. 18 the dependence of maximal mis-
orientation angles on indenter radii for both experiment and modelling are presented. It
is observed that the experimentally obtained maximal misorientation values for indenter
radii ranging from 250 µm to 5.9 µm are higher, while for the smallest radius of 1.75 µm
smaller than those obtained in the modelling. Nevertheless, the tendency is similar. For
both experiment and modelling a sharp decrease of the maximal value of misorientation
angle occurs for the indenter radius of 1.75 µm, which would be more visible on a linear
scale.

The experimentally obtained misorientation distribution for the largest sphere radius
(Fig. 8) exhibits a triangular-shaped area with a clearly defined low-angle boundary, while
this area becomes difficult to identify as the radius decreases. Such a boundary is not
observed in the numerical results given in Fig. 10.

Figure 18: Dependence of maximal misorientation angle on indenter radius in the experiment and mod-
elling.

The size effect on the Nye tensor α (Eq. (16)), which is linked to the lattice curvature
and usually interpreted as a geometrically necessary dislocation density tensor, has also
been investigated. As shown in Fig. 9, the mean norm of the Nye tensor determined
experimentally in the selected rectangle increases as the indenter radius decreases, as
expected. Interestingly, the increase in the square root of the mean norm of the Nye tensor
with decreasing tip radius is similar to the change in nominal hardness. A qualitatively
similar trend can also be seen in Fig. 12, where the distribution of the norm of the Nye
tensor for various indenter radii was determined numerically. That trend can be explained
by referring to the Taylor’s formula (18), where the flow stress related to hardness is
proportional to the square root of the total dislocation density. Its rate is incrementally
affected, according to Eq. (19), by the norm of the rate of the Nye tensor. After time
integration along a nearly proportional deformation path, this incremental gradient effect
manifests itself in a similar way in terms of the accumulated values. However, it should
be mentioned that in the case of a deformation cycle, which is absent in the indentation
test examined here, ||α|| could diminish even to zero while the accumulated isotropic
hardening would always be present according to the PS term in the hardening law (17).
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Hence, in general, the norm of the Nye tensor itself is not a comprehensive measure of
the additional hardening due to the history of plastic strain incompatibility.

5. Summary

Extensive experimental and numerical investigations of the indentation size effect
(ISE) in a copper single crystal have been carried out. A spherical indentation test
was performed with six different tip radii R, with the ratio of largest to smallest radius
(250 ÷ 1.75 µm) of approximately 140. For each tip, a wide spectrum of quantities was
determined that could be measured in the indentation test. In addition to the load-
penetration depth curves during loading and unloading, the topography of the residual
impression and the lattice rotation in the cross-section beneath the indent in the unloaded
state were also examined. Such extensive studies of ISE in one material are difficult to
find in the literature.

In the experimental tests, the maximum relative penetration depth h/R, which is
a measure of mean strain produced by spherical indentation, was approximately equal
to 0.11. So, the similar value of h/R assumed for different tip radii resulted in similar
mean strains generated beneath the indenter, but lead to different strain gradients. As
expected for the spherical indentation at a fixed h/R ratio, the size effect was manifested
by increasing nominal hardness as the tip radius R decreased. Despite a similar strain
level generated during loading, the maximal lattice rotation was the lowest for the smallest
tip radius. The gradient of lattice rotation, used to determine the norm of the Nye tensor
as a measure of the GND density in the selected region, shows the opposite tendency and
is the greatest for the smallest tip radius. It has been shown that its square root correlates
well with the increase in nominal hardness. The difference between the measured pile-up
and sink-in profiles, which is a consequence of crystal anisotropy, was visibly smaller for
the smallest tip radius than for the larger ones.

Numerical 3D FEM simulations were carried out using the model incorporating simul-
taneously two gradient-effects, within the Cosserat elastoplasticity framework with the
hardening law enhanced by the slip-rate gradient term. The latter PS term was derived
in the closed form without any fitting parameter, which is a distinctive feature compared
to other models used in the literature. The predicted effect of tip radius on the nomi-
nal hardness turned out to be highly satisfactory compared to the measurements. It has
been therefore confirmed that adding the PS gradient term to the conventional incremen-
tal hardening law provides a simple modelling tool alternative to the Nix-Gao hardening
mechanism. The advantage of the current modelling approach is that the strain hardening
law was fully calibrated using the stress-strain curve from the uniaxial compression test,
making the above prediction of the indentation size effect on hardness automatic as it
was based only on the macro-scale experiment.

In order to match the dependence of the maximal misorientation angle on the indenter
radius in the modelling and experiment, the coefficient of lattice curvature energy in the
Cosserat model required careful adjustment. In result, the maximal misorientation angle
decreased as the indenter radius decreased, similarly as in the experiment, although full
quantitative agreement was not achieved. The tendency of the increasing norm of the
Nye tensor with decreasing indenter radius was also confirmed numerically.

As far as the (anisotropic) topography of the imprint surface is concerned, the pile-
up and sink-in profiles predicted numerically using crystal plasticity with the calibrated
power hardening law were in good agreement with those measured at the largest tip
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radius. There is some discrepancy between numerical and experimental profiles for small
tips, which requires further study.

6. Conclusions

The main novel conclusions of this work can be summarized as follows:
A good prediction of the experimentally observed ISE on the load-penetration depth

relationship (beyond the stage of pop-in events) and nominal hardness has been obtained
using the conventional power-hardening law, calibrated from a standard uniaxial com-
pression test for a copper single crystal, enhanced with a gradient-type term that does
not require any adjustable parameter. This extra term reflects the usually missing effect
of the lattice spin gradient on the rate of isotropic hardening of an anisotropic crystal.

The observed distribution of lattice rotation beneath the indenter and the decrease
in the rotation magnitude with decreasing indenter radius have been qualitatively mod-
elled by adjusting the coefficient of lattice curvature energy within the adopted Cosserat
elastoplasticity framework, without losing accuracy in predicting the ISE on the load-
penetration depth relationship.
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