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Plastic yielding and deformation bursts in the presence of disorder from coherent precipitates
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Alloying metals with other elements is often done to improve the material strength or hardness. A key
microscopic mechanism is precipitation hardening, where precipitates impede dislocation motion, but the role of
such obstacles in determining the nature of collective dislocation dynamics remains to be understood. Here,
three-dimensional discrete dislocation dynamics simulations of fcc single crystals are performed with fully
coherent spherical precipitates from zero precipitate density up to ρp = 1021 m−3 and at various dislocation-
precipitate interaction strengths. When the dislocation-precipitate interactions do not play a major role, the
yielding is qualitatively the same as for pure crystals, i.e., dominated by “dislocation jamming,” resulting in
glassy dislocation dynamics exhibiting critical features at any stress value. We demonstrate that increasing
the precipitate density and/or the dislocation-precipitate interaction strength creates a true yield or dislocation
assembly depinning transition, with a critical yield stress. This is clearly visible in the statistics of dislocation
avalanches observed when quasistatically ramping up the external stress, and it is also manifested in the response
of the system to constant applied stresses. The scaling of the yielding with precipitates is discussed in terms of
the Bacon-Kocks-Scattergood relation.
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I. INTRODUCTION

Crystalline materials accumulate plastic deformation via
the motion of dislocations, the linelike topological defects
of the crystal lattice. Hence, controlling the stress-driven
dynamics of dislocations is the key to being able to tune
the mechanical properties of crystals. Alloys formed by mix-
ing other elements to pure metals often exhibit increased
strength or hardness. An important microscopic mechanism
routinely exploited in metallurgy is precipitation hardening,
where small particles formed by the alloying element obstruct
dislocation motion [1,2].

The emergence of experimental techniques such as com-
pression of micron-scale samples with nanoindentors [3–6]
and high-resolution acoustic emission (AE) measurements of
bulk samples [7] has revealed a novel paradigm: dislocation
plasticity is a spatiotemporally fluctuating and intermittent
process [8]. On micron scales, discrete strain bursts with a
broad size distribution can be seen directly in the stress-strain
curve [9–12]. Macroscopic samples tend to exhibit a smooth
stress-strain curve, but AE measurements show acoustic en-
ergy bursts spanning several orders of magnitude in energy
[7,13]. The observed strain bursts and AE events originate
from the stress-driven cooperative rearrangements within the
crystal, known as dislocation avalanches [4,8,14,15]. In gen-
eral, stress-strain curves and hence the global plastic response
of crystals consist of a sequence of such avalanches, separated
by regions of nearly linear, quasireversible deformation [16].

Recent discrete dislocation dynamics (DDD) studies of
pure crystals (i.e., crystals with no other defects or impuri-
ties in addition to dislocations) have revealed a dislocation
jamming [17] dominated regime characterized by “extended

criticality” [18–20]. Such “glassy” material response was
found first in two-dimensional (2D) [18] and then by 3D DDD
simulations [19]. The main quantity of interest here is the size
distribution of plastic slip avalanches, which is often found to
be well-described by a power law with a cutoff as

P(s|σ, L) ∝ s−τs f (s/s0(σ, L)), (1)

where f (x) is a cutoff scaling function, typically an expo-
nential, f (x) ∝ e−x, s is a measure of the avalanche size,
s0 is the cutoff avalanche size, σ is the external stress, and
L is the system size. The main signature of extended crit-
icality is power-law-like behavior of P(s|σ, L) as described
in Eq. (1), with a particular scaling of the cutoff avalanche
size: s0 exhibits an exponential dependence on σ and (when
considering an “extensive” definition of s [18]) a power-law
divergence with L. Thus, there is no special, “critical” value
σ = σc where s0 would diverge, contrary to what one would
expect in the context of systems exhibiting a (nonequilibrium)
phase transition between “jammed” and “moving” phases.
Instead, the divergence of s0 with L implies that the system is
critical at any stress, hence the notion of extended criticality
[18–20]. It is also known that analogous phenomenology
is found for creep (constant stress) simulations. The strain
rate fluctuates quite a bit in a typical (small) sample, but
regardless of σ it follows an Andrade-like scaling ε̇ ∝ t−θ

[17] for a considerable range of time, which increases with
the system size [21]. In contrast, for typical nonequilibrium
phase transitions, the order parameter (strain rate for yield-
ing) would decay exponentially in time unless one sets the
control parameter, the stress, close to the critical point value.
The variation of the avalanche size distribution with applied
stress or level of plastic deformation is also visible in the
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FIG. 1. (a)–(c) Snapshots of dislocation systems at t = 7 × 10−8 s from the constant stress simulations with σ close to the yield stress
σc′ (ρp) and precipitate parameters A = 1.0 × 1010 Pa and (a) ρp = 1019 m−3, (b) ρp = 1020 m−3, and (c) ρp = 1021 m−3. (d) Strain rate ε̇

vs t for the illustrated systems. (e) σc′ are determined by σ that produce power-law relaxation ε̇ ∼ t−θ , here σc′ = (4.5 ± 0.3) × 107 Pa. (f)
Example stress-strain curves of quasistatically driven systems with fixed ρp = 1020 m−3 and varying interaction strength A.

envelope (the averaged shape) of the intermittent stress-strain
curves [16].

The extended criticality scenario described above is ex-
pected to apply also to crystals with weak but nonzero pin-
ning due to precipitates, such that the dislocation-dislocation
interactions dominate the dislocation dynamics. Stronger pre-
cipitate pinning as studied here would in principle be expected
to change this picture. If the precipitate-dislocation becomes
the dominating interaction over the dislocation-dislocation
(jamming), one may expect in analogy to 2D DDD simula-
tions [22] that a well-defined critical point of a critical phase
transition would ensue, with collective dislocation dynamics
only in the vicinity of the critical point. Hence, the main
feature of avalanches in plasticity in that case would be power-
law scaling of P(s|σ, L) with a cutoff s0 diverging at a critical
stress σc only. Similarly, the response of the system to constant
applied stresses might be expected to show signatures of a
depinning transition: At the critical point σ = σc, power-law
relaxation in time of the strain rate is expected, ε̇ ∝ t−θ , again
in analogy to recent 2D DDD results [22]. For weak enough
stresses, the strain rate relaxation should be exponential in
time, and for σ slightly above the critical value one expects
a crossover to a state of continuous flow after a relaxation
transient. We also point out that the 2D DDD results of
Ref. [22] suggest that very strong disorder-induced pinning
may completely quench collective dislocation dynamics. This
finding may be related to the concept of mild versus wild
fluctuations in crystal plasticity when the microstructure is
varied among others by controlling the disorder [12,13].

These considerations then lead us to the question of how
one may, by controlling the precipitate content of a 3D crys-
tal, tune its mechanical properties [12,14,23] and how that
relates to the statistical physics aspects—relaxation, burst size
distributions—for a given precipitate microstructure. Previous

studies [24–27] have addressed the problem of individual dis-
locations interacting with precipitates. Here, we focus on un-
derstanding the collective dynamics of many dislocations in-
teracting with a precipitate-induced pinning field. To this end,
we study how small, randomly distributed spherical obstacles
of different dislocation-precipitate interaction strengths A and
densities ρp affect the collective dislocation dynamics in
fcc aluminum single crystals. This is done by extensive 3D
DDD simulations utilizing our recently developed methodol-
ogy [28,29] to include coherent precipitates with short-range
elastic interactions with the dislocations [28–30]. We consider
dislocation networks under both quasistatically increasing
stress and constant loading, as illustrated in Fig. 1. With
increasing pinning strength, in analogy to previous results on
simplified 2D DDD models [18,22], our 3D DDD results show
a crossover between two distinct regimes of material response,
arising from the competition of dislocation-dislocation and
dislocation-precipitate interactions.

In the rest of this article, after explaining the methods and
the choice of parameter space, we turn to the results. First,
we discuss the pinning-strength-dependent properties on the
relaxation dynamics. We expect that the two phases influence
the constant stress response in a fundamental way, and we
demonstrate this. We also analyze the dependence of the
ensuing yield stress of the crystal on the precipitate density in
terms of the Bacon-Kocks-Scattergood relation [31], and how
that relates to the phases, jamming against precipitate-induced
depinning. After that, we move to quasistatic loading by a
stress ramp. We show how the precipitates influence stress-
strain curves, the engineering yield stress, and the statistical
properties of the strain bursts occurring during such loading.
We also demonstrate that the yield stress values (“critical
point value”) that we derive from the two approaches agree.
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II. METHODS

Our simulations are performed using a modified version
of the PARADIS 3D DDD code [19,28,30] incorporating in
addition to the dislocations also a description of spherical
obstacles or precipitates. The dislocation-precipitate interac-
tion is parametrized with rp = 28.6 nm, the radius of the
precipitate, and A, the factor scaling the precipitate strength in
the radial force caused by the Gaussian interaction potential

F (r) = −∇U (r) = 2Ab3re
− r2

r2
p

r2
p

, (2)

where b is the length of the Burgers vector. Notice that the
isotropic, short-range interaction force of Eq. (2) mimics fully
coherent precipitates, which do not induce long-range stress
fields within the embedding crystal. A and the density of
precipitates ρp act as control parameters; the latter sets a
lengthscale that breaks the similitude principle of pure dislo-
cation systems [32]. For a given embedding crystal containing
specific types of precipitate particles, the A parameter (as well
as rp) can be estimated by comparing DDD and molecular
dynamics (MD) simulations [28]. In practice, this is done
by measuring the stress required to drive a dislocation line
through the precipitate in MD simulations, after which A is
adjusted in DDD to reproduce the result. A high value means
simply an impenetrable precipitate [33]. It is also possible
to use experimental input, e.g., high-resolution transmission
electron microscopy measurements of the elastic fields of the
precipitate, which can subsequently be used in DDD simula-
tions [34]. In general, the Gaussian potential allows tuning of
the defect strength from weak, shearable obstacles to strong
impenetrable obstacles, which the dislocations have to bypass
via the Orowan mechanism. In the former case, for simplicity
here the precipitates are taken to remain intact even after a
dislocation line has moved through them. A final note is that
real precipitate-host systems have a size distribution for the
precipitates, and not all of the precipitating species necessarily
ends in the precipitates thus changing the dislocation mobility.
We neglect these effects, though certainly it would be an
interesting exercise to add such detail to the DDD simulations
from experiment and multiscale simulations.

The material parameters employed here mimic fcc Al with
precipitates [19]. The system was implemented with periodic
boundaries and size L = 4 μm, which is sufficiently large
to produce behavior independent of the system size (supple-
mentary Fig. 1 [35]). One may notice that this size scale is
close to typical micropillar experiments [9,12,15,23], but here
the use of periodic boundaries implies that we are simulating
a part of a bulk system. A total of 24 initial dislocations
in the slip system 1

2 〈110〉{111} imply an initial dislocation
density ρ0 ≈ 2.0 × 1012 m−2. The edge and screw dislocation
mobilities, Medge and Mscrew, are chosen as 104 (Pa s)−1. The
precipitate strength A ranges from (pure dislocation systems
with 0 to) 1.0 × 109 Pa (weak) and 1.0 × 1010 Pa (intermedi-
ate) to 5.0 × 1010 Pa (strong precipitates). Only the strongest
precipitates are able to cause dislocations to form Orowan
loops [28]. ρp is varied from 1018 to 1021 m−3 (i.e., at most
Np = 65 508 precipitates in the system). The volume fraction
(�10%) corresponds to relevant experiments [12]. Other rel-

evant simulation parameters are collected in supplementary
Table I [35].

Constant stress DDD simulations allow us to observe the
power-law relaxation of ε̇ (or the lack thereof), and to locate
the yield stress by searching for a σ -value resulting in pure
power-law behavior of ε̇. After initialization (relaxation and
a second step of relaxation after adding the precipitates), a
constant stress σ is applied in the [100] direction. To find
the approximate value of the critical stress σc′ , systems with
different ρp are loaded with four to eight different values of σ

with 19 simulations for every (ρp, σ ) combination.
To obtain the avalanche statistics, a quasistatic stress ramp

driving protocol is used [19]. Here, this amounts to impos-
ing a stress rate σ̇ = 1.0 × 1014 Pa/s in the [100] direc-
tion in between avalanches while keeping σ constant during
avalanches. To define avalanches, we consider the “activity
signal” defined by the extensive dislocation velocity, V (t ) =∑

i liv⊥,i, where li is the segment length and v⊥,i is the ve-
locity perpendicular to the segment’s line direction. Then, an
avalanche is defined as a continuous sequence of V (t )-values
exceeding a threshold value Vthres = 5 × 10−6 m2/s. The
avalanche size s is then defined as s = ∫ T

0 [V (t ) − Vthres]dt ,
where T denotes the duration of the avalanche. Here we fix
the precipitate density to ρp = 1020 m−3, and we vary the
precipitate strength A and collect statistics from 100 different
initial dislocation-precipitate configurations.

III. PLASTIC FLOW UNDER CONSTANT STRESS

The creeplike flow under constant stress is studied next, for
a relaxed configuration of initially straight dislocations (initial
dislocation density ρ0 ≈ 2.0 × 1012 m−2). Example snapshots
of deforming systems for different densities ρp of precipitates
of intermediate strength are depicted in Figs. 1(a)–1(c). A
clear effect of increasing ρp on the structure of the dislocation
network is evident: In Fig. 1(a), displaying a system with
ρp = 1019 m−3, only a few of the dislocation segments are
pinned by the precipitates, but increasing ρp to 1020 m−3

[Fig. 1(b)] and even to 1021 m−3 [Fig. 1(c)] results in a
noticeable increase of pinning and hence roughening of the
dislocation lines due to precipitates. In what follows, these
morphological changes due to precipitates are related to the
collective dynamics and plasticity.

The plastic flow in response to a constant σ is characterized
by a temporal Andrade power-law decay of the strain rate,
ε̇(t ) ∝ t−θ [17]. Examples of a single system ε̇(t ) of the illus-
trated systems in Figs. 1(a)–1(c) and average ε̇(t ) for different
σ for the case with A = 2.3 × 1019 Pa m3 and ρp = 1020 m−3

corresponding to Fig. 1(b) are shown in Figs. 1(d) and 1(e).
These illustrate that the power-law decay of ε̇(t ) ∝ t−θ is ob-
tained for a specific critical yield stress value σ = σc′ (A, ρp)
only; for σ < σc′ , ε̇(t ) decays exponentially to zero, while
for σ > σc′ the system appears to approach asymptotically
a steady state with a finite ε̇(σ ). We repeat the simulations
for a wide range of A and ρp. The main panel of Fig. 2(a)
shows three examples for different A-values of the critical
relaxation of ε̇(t ) at σ = σc′ (A). Interestingly, the exponent
θ is found to increase with pinning strength A. The inset
illustrates that upon increasing ρp for a fixed A, the plasticity
exhibits two regimes: For pure and weakly disordered systems
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FIG. 2. (a) Different A produce different Andrade exponents θ .
Correspondingly, the inset shows θ (ρp). (b) The increase in dislo-
cation density during the creep with σ = σc′ . The inset shows the
existence of a correlation between the moment the density starts to
increase, t+, and 〈d〉, the characteristic length scale of the dislocation
and precipitate configurations.

we find θ ≈ 0.3 independent of ρp, while for larger ρp, θ

increases with ρp. The main panel of Fig. 2(b) shows how the
dislocation density ρ increases with time during the critical
relaxation. A noticeable increase from the initial value takes
place at a time scale t+, which depends on ρp. The inset
of Fig. 2(b) shows that t+ is linearly dependent on 〈d〉/σ ,
where 〈d〉 = (d−3

p + d−3
d )−1/3 (dp = ρ−1/3

p and dd = ρ
−1/2
0 )

is the characteristic defect-defect distance, considering both
dislocations and precipitates. Thus, ρ starts increasing as
soon as the dislocations get pinned (by the nearest precipi-
tate or another dislocation). In the pinning-dominated regime
ρp � 1020 m−3, 〈d〉 is dominated by the precipitates, and
increasing ρp makes the relaxation faster, as evidenced by the
ρp-dependent θ . Interestingly, this is different from usual de-
pinning transitions where the relaxation exponent is constant
when varying microscopic detail [36], which seems to be the
case for the other critical yielding transition exponents below.

FIG. 3. Dependence of σc′ on ρp with A = 1.0 × 1010 Pa with
σ

pure
c′ (dotted line), the BKS equation (dashed line), and the asymp-

totic square root scaling with precipitate density (solid line). Inset:
the mean precipitate distance in the glide plane: the dashed line (main
figure) is obtained by including the precipitates intersecting the glide
plane of the dislocation “⊥” (red circles with centers in the darker
shaded region, compared to the white circles).

These results may explain the wide range of experimentally
observed θ -values in, for instance, titanium alloys [37].

For the yield stress we find an asymptotic power-law
dependence σc′ ∼ ρ0.50

p for large ρp (Fig. 3). To comprehend
this, we apply the Bacon-Kocks-Scattergood (BKS) relation
connecting the obstacle hardening to the yield stress [24,31].
The stress to overcome the obstacles is determined by the size
and average distance of the randomly located obstacles along
with the dislocation self-interactions. The BKS relation fits
the simulation results very well (dashed line in Fig. 3) using
the critical stress producing the power-law relaxation in creep
σc′ as shown in Fig. 1(e). Also important is that one uses
(2rpρp)−1/2 as the mean interprecipitate distance in the glide
plane (inset of Fig. 3) [29] as a measure of the true interaction
range. Thus

σc′ (ρp) = σ
pure
c′ + 1

2π

Gb

α
[
(2rpρp)−1/2 − 2rp

]

×
[

ln
(2rpρp)−1/2

rcore

]−1/2[
ln

(
D

rcore

)
+ 0.7

]3/2

, (3)

where σ
pure
c′ is the critical stress of a system without any

precipitates, α is the Schmidt factor, G is the shear modulus, b
is the magnitude of the Burgers vector, rcore is the dislocation

radius, and D = 2rp(2rpρp)−1/2

2rp+(2rpρp)−1/2 . The asymptotic square root
dependence on ρp is found [cf. Fig. 3(a)] in the depinning-
dominated regime.

IV. QUASISTATIC LOADING SIMULATIONS

The transition from jamming to pinning is also seen in
the dislocation avalanche statistics. We fix ρp to 1020 m−3

and vary A, and we study the resulting avalanches s seen in
Fig. 1(f). Figure 4(a) shows the mean size 〈s〉 as a function of
σ for different A-values. The systems with weakest disorder
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FIG. 4. (a) The evolution of the average avalanche size as the
external stress increases during the quasistatic loading for different
values of A and ρp = 1020 m−3. The solid and dashed lines show
the applied functions 〈s〉 ∼ eσ/σ0 and 〈s〉 ∼ (σc − σ )−γ ′

, respectively.
Here σ0 = 3.4 × 106 Pa, σc = 4.4 × 107 Pa, and γ ′ = 1.7 were
obtained by fitting. (b) Corresponding average stress-strain curves.
The inset shows the same curves scaled by the stress value at ε =
ε0 = 0.005% (dashed line).

exhibit essentially the same exponential growth of 〈s〉 with
σ as pure 3D DDD systems [19]. Weak precipitates are
unable to pin the dislocations strongly enough to compete with
dislocation jamming. However, they make the system more
susceptible to avalanches, as evidenced by a decrease of the
mean stress increment in between avalanches (supplementary
Fig. 2 [35]).

The evolution of 〈s〉 with σ for intermediate strength dis-
order displays the typical behavior of a depinning transition:
First with small stress, 〈s〉 increases slowly, and it appears to
diverge when approaching σ = σc ≈ 4.4 × 107 Pa [Fig. 4(a)].
It is harder to study the strongest precipitates due to numerical
limitations in reaching high enough stresses/strains in that
case to observe the expected divergence of 〈s〉.

Figure 4(b) depicts the average stress-strain curves with
different disorder strengths. As is evident, the increasing

strength of precipitates hardens the system, so using an engi-
neering criterion of stress at ε0 = 0.005% we find an increas-
ing yield stress with large enough A. The inset of Fig. 4(b)
displays the average stress-strain curves scaled by the above-
defined yield stress σ (ε = ε0), which reveals that the shape
of the curve changes drastically: with the weakest disorder
or no disorder at all, the curves have the same shapes up to
the maximum strain considered. Only for the intermediate
disorder of A = 1.0 × 1010 Pa, with a depinning transition,
does the curve approach a plateau value as the avalanche size
diverges close to σc. For A = 5.0 × 1010 Pa, the shape of the
curve is similar to the curve of intermediate disorder up to the
reachable strain. The two kinds of average stress-strain curves
are what we would expect given that the avalanche statistics
along the stress-strain curves are also different [16], as we
discuss next.

Figure 5(a) illustrates the stress-resolved size distribu-
tions of avalanches in weak and intermediate precipitate
systems. The distributions of the avalanche sizes are fitted
with P(s, σ ) ∝ s−τs e−s/s0 (σ ), where s0(σ ) is a stress-dependent
cutoff, and the best fit is chosen with the maximum-likelihood
method [38]. The power-law exponent τs does not vary much
with A: τs = 1.30 ± 0.02 for A = 1.0 × 109 Pa and τs =
1.25 ± 0.02 for A = 1.0 × 1010 Pa. The behavior of s0(σ )
shows a clear dependence on A: with weak disorder (or
without disorder), there is only weak σ -dependence. For in-
termediate A, Fig. 5 shows a clear-cut divergence of the cutoff
s0(σ ) as the σc is approached from below. This divergence
is confirmed by the data collapse of Fig. 5(b) and its inset,
where s0 ∝ (σc − σ )−1/
 , with 1/
 ≈ 2.6. Notably here the
fitted value of σc = 4.4 × 107 Pa agrees well with the critical
values of σc′ from creep in Fig. 1(e) and σc in Fig. 4(a). The
“engineering” yield stress from Fig. 4(b) is approximately
σc = 3 × 107 Pa for this case. As a side note, such a value
is roughly four times larger than the σ (ε = ε0) in the limit of
negligible precipitate strengthening.

For this depinning phase transition, the exponent values
τs ≈ 1.25 and 1/
 ≈ 2.6 differ from those predicted by
mean-field depinning (MFD; 3/2 and 2, respectively [39]).
The same applies to the stress-integrated size distribution
(τs,int = 1.39 ± 0.01 rather than 2 for MFD, supplementary
Fig. 3 [35]), the exponent of the stress-resolved avalanche
duration distribution (τT = 1.30 ± 0.05, while MFD predicts
2, supplementary Fig. 4 [35]), and the exponent characterizing
the scaling of the average avalanche size with the avalanche
duration, 〈s〉 ∝ T γ , with γ = 1.76 ± 0.01 rather than 2 for
MFD (supplementary Fig. 5 [35]). Interestingly, similar ex-
ponent values for τs and γ have been recently found for
amorphous plasticity [40]. It is also interesting to note that
we recover the depinning of a single dislocation/elastic in-
terface [41,42] by reducing the number of initial dislocations
(supplementary Fig. 6 [35]). The important point here is
that depinning of a single dislocation is different from the
collective depinning of several dislocations we have focused
on in the present study.

V. CONCLUSIONS

The yielding of precipitation-hardened fcc alloys demon-
strates the role of collective phenomena in the nature of
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FIG. 5. (a) The avalanche statistics from systems with precipitate parameters ρp = 1020 m−3, A = 1.0 × 109 Pa, and A = 1.0 × 1010 Pa.
The solid lines represent fits (see the text). Part (b) shows the data collapse for A = 1.0 × 1010 Pa, and the inset illustrates the divergence of
the distribution cutoff as s0 ∼ (σc − σ )−1/
 , where σc = 4.4 × 107 Pa and 1/
 = 2.6 were obtained by fitting.

deformation bursts and in the averaged material response. The
competition between the interactions among dislocations and
between dislocations and precipitates dictates the statistics of
collective yielding and controls the increase in yield strength
by precipitates. Only when dislocation pinning due to disorder
is the dominant mechanism do the samples exhibit under
loading a true critical point in the sense of a nonequilibrium
phase transition. A large increase in the flow stress follows
when the disorder is relevant. The BKS relation for the
yield stress might indeed be said to really work only for
large precipitate densities when a yielding transition exists.
We have studied here the case of fully coherent precipitates
with isotropic interactions with the dislocations. However,
the main point of competing mechanisms should persist so
that similar disorder-dependent classes of critical behavior are
expected with other crystal orientations and structures and
precipitate/metal systems.

One should pay attention to how the concept of yield stress
is used in this work. For quasistatic loading simulations, we
use a typical way of defining it in DDD simulations, as the
stress corresponding to a small amount of plastic strain. How-
ever, we also use “true measures” of the yield stress, which
means that if there is a critical point, defined by the divergence
of the avalanche size distribution, power-law relaxation of the
strain rate at constant stress, and continuous flow above the
critical point, then independent measurements of the critical
stress value should agree. The latter value is of course much
higher, and Figs. 3 and 4 allow us to compare such values.

The yielding or depinning critical point is characterized by
nontrivial exponents different from those of MFD, as perhaps
expected because of the anisotropic dislocation interactions
[15,40]. An open question is whether in this “strong disorder
regime” one may find other universality classes, with different
scaling properties for the avalanches. Finally, in micron-scale
plasticity, the strong dependence of the deformation fluc-
tuations on details of the quenched pinning field becomes
important for applications.
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