Skip to main content

Lecture on by Javier Francisco Dominguez Gutierrez from Max Planck Institute for Plasma Physics

Date
Date 2

Javier Francisco Dominguez Gutierrez from from Max Planck Institute for Plasma Physics gave a lecture on the topic Classification and quantification of material defects in damaged crystalline solids by machine learned based MD simulations and a novel fingerprinting and visualization tool at the National Centre for Nuclear Research.

Dr Dominguez discussed the analysis of damaged crystalline materials by presenting the computation of machine learning (ML) molecular dynamics (MD) interatomic potentials into the Gaussian Approximation Potential framework, to model efficiently the mechanism of energetic particle irradiation on crystalline solids. The obtained simulated damaged materials are then studied by a fingerprint-like method which is based on the calculation of a descriptor vector for each atom in the sample. This method has also been proposed to provide a probabilistic interpretation of identified point defects, e.g. self-interstitial-atoms and vacancies, requiring modest computational resources.

Dr Dominguez commented on results of the study of damage in pure and hydrogenated tungsten samples due to neutron bombardment. Common point defects like self-interstitial-atoms and W atom next to a vacancy, as well as vacancies formation, are quantified and classified dynamically at different impact energies. The arrangement of complex defects like dumbbells and crowdions are identified in the sample by his method with a principal component analysis.

Galeria


This project has received funding from the European Union Horizon 2020 research and innovation
programme under grant agreement No 857470 and from European Regional Development Fund
via Foundation for Polish Science International Research Agenda PLUS programme grant
No MAB PLUS/2018/8.
Poland
The project is co-financed from the state budget within the framework of the undertaking of the Minister of Science and Higher Education "Support for the activities of Centers of Excellence established under Horizon 2020".

Grant: 5 143 237,70 EUR
Total value: 29 971 365,00 EUR
Date of signing the funding agreement: December 2023

The purpose of the undertaking is to support entities of the higher education and science system that have received funding from the European Union budget in the competition H2020-WIDESPREAD-2018-2020/WIDESPREAD-01-2018-2019: Teaming Phase 2. in the preparation, implementation and updating of activities, maintenance of material resources necessary for carrying out activities, acquisition and modernization of scientific and research apparatus, maintenance and development of personnel potential necessary for the implementation of activities, and dissemination of the results of scientific activities.